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ABSTRACT
Understanding the regularity of urban residents’ behaviors, or ur-
ban dynamics, is of urgent demand for building an efficient and
livable city. Nonetheless, this is challenging due to the expanding
urban population and city size. In this paper, we propose a novel sys-
tem UrbanRhythm to reveal the urban dynamics hidden in human
mobility data from the view of the city, which is a new perspective.
To obtain UrbanRhythm, we first divide the city into different time
slots. For each urban region in each time slot, we define its mobility
feature as the number of people staying in, leaving from and arriv-
ing at this region. Then we utilize an image processing method Saak
transform to capture the mobility spatial distribution pattern in the
city for each time slot and classify time slots into hierarchical city
states. Finally, we characterize the urban dynamics as the transform
of city states along time axis. We evaluate our proposed system
on two real-life datesets. Several city states are identified and in-
terpreted. Interestingly, we not only discover general states which
correspond to residents’ daily behaviors like sleeping, working and
relaxing, but also distinguish sub-states such as deep-sleeping and
light-sleeping. We find that the urban temporal dynamics are highly
daily repeated except that the regularity are different in working
day and non-working day. Besides, we implement an App analysis
to further validate the detected city states. This study sheds light on
urban dynamics hidden in human mobility and can further pave the
way for more complicated mobility behavior modeling and deeper
urban understanding.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems;Datamin-
ing; •Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing; • Computing methodologies →
Machine learning.
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Urban dynamics, mobility data, Saak transform, hierarchical clus-
tering.
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1 INTRODUCTION
As reported by UN1, up to 2018, 55% of the world’s population lives
in urban areas. With the increasingly number of urban residents,
the rapid urbanization brings the increasingly complicated city
structure. These complexities are reflected in the changeable inten-
sity and distribution of the city resources at different time, which
raise challenges to city governing, ranging from traffic monitoring,
resource scheduling to city planning. Those city resources, includ-
ing but not limited to population, traffic, are further determined by
residents’ behaviors. For example, at rush hours when most resi-
dents are on the way to home with crowded traffic, the city belongs
to a state; while in mid-night when most residents are asleep, the
city belongs to another state. In order to build smart cities which are
both efficient and livable, understanding the regularity of residents’
behaviors, i.e., urban dynamics, has become an urgent demand for
policymaker, city governors and urban planners.

Previous understanding of residents’ behaviors comes from con-
ducting surveys on human agents, which is costly and has limita-
tions in terms of generalization and geographical scope. Luckily,
smart phones and mobile network are popular and ubiquitous ev-
erywhere, which makes it available for us to collect large-scale
mobility data. Recently, many works have investigated urban dy-
namics through resident’ mobile behaviors. Sofiane et al. [1] built
activity time series for different cities and found that close neighbor-
hoods tend to share similar rhythms. Louail et al. [23] demonstrated
that the city shape and hot-spots change with the course of the
day. Fabio et al. [25] captured the spatio-temporal activity in a city
across multiple temporal resolutions, and visualized different ac-
tivity levels in different time slots. Xia et al. [33] revealed the daily
activity patterns by learning offline mobility and online App usage
together. However, these previous works are either based on statics
[1, 23] or case studies of several regions [15, 25, 33] which do not
consider the all the regions in the city and their spatial relationship,
thus are not able to present urban dynamics from the view of the
whole city in a concise way.

To bring meaningful and useful insights to researchers and gov-
ernments, in this paper, we propose a system called UrbanRhythm,
to understand the daily urban dynamics hidden in mobility data

1https://www.un.org/development/desa/en/news/population/
2018-revision-of-world-urbanization-prospects.html
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from the view of the whole city. For a better and deeper under-
standing, UrbanRhythm needs to answer the following three key
questions:

(1) What features should be used to characterize urban dynamics
from high-dimensional activities?

(2) What are the basic components of urban dynamics?
(3) What is the regularity of urban dynamics within one day?

How does it vary from week to month?

To answer these questions, UrbanRhythm has some specific
design. Firstly, we divide the mobility data into different time slots
and look into the dynamics reflected by the mobility changing with
these time slots. Yuan et al. [36] has proved the moving-in and
moving-out flow can be used to discover urban functional regions,
and commuting is the most important activity in the city. Thus, for
each region in the city in each time slot, we extract staying, leaving,
arriving three features to represent the mobility within it.

To detect urban dynamics from the view of the whole city, for
each time slot, we map the mobility of different regions in the city
to a three-channel city image, where a pixel on the image represents
a region, and three channels correspond to staying, leaving, arriving
three mobility features. Then image processing methods could
be utilized to capture the mobility spatial distribution pattern in
the city. Compared with ordinary image processing tasks, we lack
supervision and enough data to train a deep learning network.
Thus we choose an unsupervised image processing method Saak
transform and redefine it to suit our problem.

To answer the second question, we detect city states, i.e., several
specific kinds of mobility, by utilizing unsupervised clustering after
calculating mobility distribution patterns for each time slot. Specif-
ically, we use hierarchical clustering to investigate not only city
states, but also their inclusion relationships. Several city states and
sub-states are identified. We interpret them by analyzing the tem-
poral distribution pattern of states, the spatial distribution pattern
of mobility, and the relationship between states and sub-states. As
a result, we find that city states highly correspond to people’ daily
behaviors like working, sleeping, relaxing and commuting. And
the differences on the intensity and spatial distribution of mobility
further lead to their division to sub-states like deep-sleeping state
and light-sleeping state.

For the third question, we visualize the urban dynamics by full
time mapping and 24-hour mapping; the regularity of urban dy-
namics within a day and between days can be observed. We find
that the urban dynamics are highly daily repeated except that the
regularity are different in weekday, weekends and festival holidays.
By further comparing different dynamics, some other interesting
dynamic patterns can be found, like the very symmetric night and
the unexpected peace in some non-weekday afternoons.

Finally, we carry out two experiments on two real-life datasets of
Beijing and Shanghai. Besides answering the above three questions,
we employ a TF-IDF analysis [27] on the relation between the
App usage and city states to further validate our detection and
interpretation of city states.

To summarize, the contribution of our work is three-fold:

• We propose a novel system UrbanRhythm to reveal daily
urban dynamics from the view of the whole city.

• We identify specific city states including working time, sleep-
ing time, relaxing time, rush hours and other states corre-
sponding to people’s daily life. These found states can be
further divided into sub-states. We find that the urban dy-
namics are highly daily repeated except that the regularity
are different in weekday, weekends and festival holidays.
Some other interesting dynamics patterns are analyzed as
well.

• We evaluate our method in two mobility datasets from dif-
ferent sources in different cities. Urban dynamics in two
cities are revealed, visualized and interpreted. Moreover, we
validate our detection and interpretation of city states by
employing a TF-IDF analysis on the relationship between
App usage and city states.

2 OVERVIEW
2.1 Problem Definition
With the following definitions, we characterize urban dynamics
from mobility data.

(a) Grid-based city partition (b) Three-channel city image

(c) City image series

Figure 1: A illustration of definitions of region, city image
and city image series.

Definition 1 (Region) In this problem, we partition a city into
a I × J grid map based on the longitude and latitude where a grid
denotes a region, as shown in Fig. 1(a). Here, region in i-th row and
j-th column is denoted by Ri, j .
Definition 2 (City Image) After dividing a city into I × J grids,
we can describe the characters of the city by a three-channel image,
where each channel presents one character and each pixel presents
one region. Here we define the channels of an image as an staying-
channel, a leaving-channel and an arriving-channel presenting that
howmany people stay at, leave from and arrive in the region during
a given time slot, respectively [36]. The 3-channel image of a given
time slot is shown in Fig. 1(b).
Definition 3 (City Image Series) City images at different time
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slots form a city image series, which reveal the variation of human
mobility along with the time. A city image series is shown in Fig.
1(c), where N is the total number of time slots. We denote the city
image series byM = M1,M2, ...,Mn , ..,MN withMn denoting the
image at n-th time slot.
Definition 4 (City state)We divide city images into several kinds.
A city state represent a typical kind of city images and further
represent a typical kind of mobility. Similar city images share the
same city state. We define the total number of city states to be K
and the state of city imageMn to be Sn , where Sn = 0, 1, ...,K − 1
Definition 5 (Urban Dynamics) We classify each city image in
city image series to a city state and define urban dynamics as the
transform of city states along with time.

In this paper, we aim to transform mobility data to city images
series, detect city states from it, and finally reveal urban dynamics
by these identified states.

2.2 System Framework

(a) Detection city states

(b) Reveal city dynamics

Figure 2: A illustration of UrbanRhythm system.

Our system is shown in Fig. 2. First, we extract the mobility
features staying, leaving, arriving at different time slots to form
the city image series M . Then, we conduct multi-channel Saak
transform on each city image, and finally use the transform outputs
as input for the hierarchical clustering to detect city states. Urban
dynamics could be revealed by these states at different time slots.

To get deeper insight and answer the second and third questions,
i.e., to understand the basic components and the regularity of urban
dynamics, we interpret physical meaning of each city state, visu-
alize urban dynamics and investigate special dynamic patterns by
comparing different kinds of urban dynamics. In the end, we take
an App usage analysis to validate our detection and interpretation
of city states.

3 ALGORITHM DESIGN
3.1 Saak transform
We use Saak transform to calculate the spatial distribution pattern
of mobility. Kuo and Chen [22] proposed the Saak transform re-
cently. The Saak transform converts a single-channel imageAn to a

Figure 3: Thefirst stage of Saak transform.Weassemble each
four adjacent regions into a grid, then apply PCA on all grid
vectors and conduct a S/P transform on the outputs vectors
of PCA. Finally, we refill the transformed vectors to their
original grids and generate new images.

feature vector Fn in spectral space by implement Karhunen-Loeve
transform (KLT) step by step. Chen et al. [10] put forward lossy
saak transform, in which he uses the principal component analysis
(PCA) instead of KLT to save time and space.

Under our problem definition, with images series as input, each
stage of Saak transform has the following three steps:

1) Assemble adjacent regions:We first choose the size of area
in which we calculate the local distribution pattern. In practice, we
choose the basic scale of 2 × 2. Let value in region Ri, j denoted
by ri, j ∈ RD , i, j = 1, 2 . . . Lin , where Lin is the input width and
height. For each city image, assemble each 4 adjacent regions to be
a new grid, denoted as Gi, j ∈ R4D , i, j = 1, 2 . . . Lout .

дi, j = Concatenate(r2i−1,2j−1, r2i−1,2j , r2i,2j−1, r2i,2j ) (1)
Lout = Lin/2 (2)

2)Calculate local distribution pattern:We conduct principal
component analysis (PCA) on grids vectors from all N city images.
In this way, for each gridGi, j , a comparison with other grids among
all city images is implemented and the variation pattern is calculated
and expressed as output vectors G∗

i, j .
To avoid the change of sign in two consecutive stage, we conduct

a sign-to-position(S/P) transform , with G∗
i, j as input and G

′
i, j as

output.

д′2k−1 = Relu(д∗k ),k = 1, 2 . . . 4D
д′2k = Relu(−д∗k ),k = 1, 2 . . . 4D

3)Generate new image: Refill each girdGi, j with the transform
vector д′i, j ∈ R8D . Form N new images with half the original width
and height. The spatial relationship between grids are kept for the
next stage transform.

The scale of 2 × 2 is the smallest scale we can choose. Using
bigger scale like 3*3 or 4*4 may miss the influence of small district
pattern to city state. And the same as Chen et al. did, we reserve
components with explained variance ratios lager than 3% in PCA,
which has been proved to be an acceptable compromise between
efficiency and reserving discriminative information [10].

The first stage of Saak transforms is illustrated in Fig. 3. Put
together the outputs of all stages, the spatial distribution pattern of
mobility is calculated.

3.2 Multi-channel Saak transform
The original Saak transform only deals with one channel at one
single time. We can’t directly concatenate three channels of city
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images and apply Saak transform because people’s staying, leaving,
arriving are obviously correlated.

Thus we design Multi-channel Saak transform. We apply KLT
on channels to do decorrelation and use KLT-transformed images
as input for Saak transform. For each city image, put together the
outputs for all stages of Saak transform as the feature vector for
this city image.
3.3 Clustering
After Saak transform, each city imageMn can be represented as fea-
ture vectors Fn (n = 1, 2 . . .N ). To save time and space for clustering,
we apply PCA on feature vectors to reduce their dimensions to 128,
uniformly. The choice of this dimension is under the consideration
of the explained variance ratio of PCA.

Intuitively, human mobility behaviors usually have intrinsic pe-
riods of day and week; city state of different time could be alike.
Thus unsupervised clustering method can be utilized on city images
to find those with similar mobility features. However, the problem
of totally unsupervised clustering is that we don’t have a specific
standard to evaluate the cluster results and due to that it’s hard for
us to specify a number of clusters. On the other hand, we’re not
only curious about a specific set of city states or a specific kind of
city dynamics, but also their inclusion relationships. So to better
understand the process of clustering and the relationship between
clusters, we use hierarchical clustering method to cluster feature
vectors.

We conduct hierarchical clustering in these obtained feature vec-
tors Fn (n = 1, 2 . . .N ) of city images. The basic idea of hierarchical
clustering is to generate a tree of clusters where two son clusters
merge to form a father cluster. The leaf node of this tree is the input
N feature vectors. And then from bottom to up iteratively merge
the most suitable two clusters until the stop condition is met. We
define the suitability of two clusters’ merging according to Ward’s
method [19], to minimize the variance of the clusters after merging.
By applying hierarchical clustering instead of distance-based or
density-based clustering, we could analyze the dynamic states at
different levels.

4 PERFORMANCE EVALUATION
In this section, we experiment our algorithm in two different datasets.
We further answer the second and third question based on these
results.

4.1 Datasets
We collect two large scale real world mobility datasets to apply
and evaluate our methodology. The datasets are collected from two
different metropolis: Beijing and Shanghai, China. The features of
the datasets are presented in Table 1. Shanghai dataset also contains
the mobile applications (App) the mobile users are currently using,
by resolving the URI of HTTP requests . We use this App usage
records to further validate the city states identified by analyzing
mobility features.

Privacy and ethical concerns: We have taken the following
procedures to address the privacy and ethical concerns. First, all
of the researchers have been authorized by data provider to utilize
the data for research purposes only. Second, the data is completely
anonymized. Third, we store all the data in a secure off-line server.

(a) t-SNE for Beijing (b) t-SNE for Shanghai

Figure 4: Feature visualization using 8 clusters to represent
8 states, where each point represents one time slot and time
slots in the same state are presented in the same color.

4.2 Pre-processing
We divide Beijing into 1km ×km grids, and finally remain the areas
in downtown with total grid number of 61 × 65. For Shanghai, to
evaluate the flexibility of our framework, we divide its city areas
into 256 × 256 grid map, where each grid has a granularity of
200m × 200m. Besides, we calculate the mobility features staying,
leaving, arriving for each half hour. Thus, the number of city images
for Beijing is 1440 and for Shanghai is 240.

4.3 Feature Space Visualization
We apply PCA on features vectors after Saak transform to reduce
their dimensions and as the input for clustering. We conduct t-SNE
[24] to visualize the relationship of all 128-dimensional features.
Results for Beijing and Shanghai are shown in 4(a) and 4(b), respec-
tively. From these two figures, we can explicitly observe that in the
feature space, the time slots of the same state distribute closely to
each other, while the time slots of different states generally have a
larger distance. Therefore, it demonstrates that the Saak and PCA
transform is effective to represent the feature of time slots.

4.4 Clustering Results
By hierarchical clustering, we can detect city states and further
answer the second and third question by the analysis on clustering
results.

4.4.1 Hierarchical Clustering Structure. Since hierarchical cluster-
ing is utilized, the structure of clustering results from up to bottom
could be clearly observed. By default, we display the cluster hier-
archy using several circles, where child clusters are nested within
their parent cluster.

For Beijing, we show the 3-level results for 3, 7, 11 clusters
exhibited in circles with the color from blue to white in Fig. 5.
We also label the semantics for each state when the time slots
are divided into 11 clusters. Obviously, the outermost three circles
represent three basic states in city that people are working, relaxing
and sleeping. When the number of clusters increases, the time slots
can be divided into more detailed states. For example, the basic
sleeping state of Beijing can be divided into four states Home, Sleep
1, Sleep 2 and Sleep 3, which represent different levels of people’s
staying home and movement in the city. The latter three sub-states
could be further interpreted as different levels of how many people
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City Sources Localization Method Duration Number of Users

Beijing, China Mobile applications GPS module 1 Apr.∼30 Apr. (2018) 18,916,166
Shanghai, China Cellular network Cellular base station 21 Apr.∼25 Apr. (2016) 1,700,000

Table 1: Key features of two real world mobility datasets we utilize.

(a) Beijing clustering

(b) Shanghai clustering

Figure 5: Hierarchical clustering results with different clus-
ter numbers.

are sleeping, respectively. The same is to Shanghai. We show the
3-level results for 3, 6, 9 clusters in Fig. 5.

To conclude, the hierarchical relationships of different time slots
is consistent with our intuitions to the states of city, which is pave
the way for our understanding of urban dynamics.

4.4.2 Urban Dynamics Analysis. To analyze specific city states and
investigate how they correspond to residents’ daily life, we set
the number of clusters to be 11 and 9 for Beijing and Shanghai
respectively and interpret the physical meaning of each state by
analyzing the temporal distribution pattern of states, the spatial
distribution pattern of mobility, and the relationship between states
and sub-states.

To investigate the regularity of urban dynamics within a day
and how it vary from day to day, we visualize the obtained urban
dynamics in two aspects as follows:

1) Full time mapping: Since N city images of N time slots
could be regarded as a time series, we go back to time series and

(a) Beijing state series

(b) Beijing 24 hours pie charts

Figure 6: Visualization of dynamics for Beijing when the
number of clusters is 11. In (a), we show the transform of
city state along with time within 30 days. In (b), we visualize
dynamics for 4 kinds of days, i.e., weekday, weekends, May
Day and Qingming Festival.

plot each slot with its identified state, forming a state series that
present the transform of state over time. By doing this, we hope to
reveal the period of human mobility and the regularities of urban
dynamics.

2) 24-hour mapping: To analyze the variation of city state in
a day, we show each 48 time slots in the same day as a 24-hour
pie chart. Besides, we divide the time slots into weekend, weekday
and holidays to show 24-hour pie charts respectively. By doing
this, dynamics within a day can be observed and different kinds of
dynamics are presented and compared.

For Beijing, the state series is shown in Fig. 6(a), and the 24-hour
pie chart is shown in Fig. 6(b). Since the dataset of Beijing covers a
whole month, we can easily observe the period of day and week in
the state transform process. The distribution of state on the time
axis is very symmetrical and neat, which is consistent with the
regularity of people’s daily commuting. To explain these states in
more detail, we align the states on the time axis and display them in
24-hour pie chart, where each circle presents one day and time slots
in the same state are exhibited in the same color. We summarize
the characters of each state as follows:
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(a) Shanghai state series

(b) Shanghai 24 hours pie charts

Figure 7: Visualization of dynamics for Shanghai when the
number of clusters is 9. In (a), we show the transform of city
state along with time within 5 days. In (b), to better compare
dynamics betweenweekdays andweekends, we visualize dy-
namics for Mon, Thu, Fri, Sat, Sun from inner circle to outer
circle.

Sleep States: These states include Sleep 1, Sleep 2 and Sleep
3. In these states, most people are sleeping and few people are
moving in the city, reflected by bigger value in staying-channel
than arriving-channel and leaving-channel. Besides, values in all
three channels in Sleep states are much smaller than others states,
suggesting few people are using the mobile application. Values in
all three channels decrease from Sleep 3 to Sleep 2 to Sleep 1, which
means more and more people become asleep.

Home State: This state usually covers 23:00-23:30 and 7:00-7:30
in all days. It is similar to Sleep states with larger value in staying-
channel and smaller value in leaving-channel and arriving-channel,
according to the clustering structure in Fig. 6. However we are
surprised to find it also appears in some non-weekdays afternoons.

Rush States: These states include Rush 1 and Rush 2. In these
states, most people are moving in traffics, reflected by bigger value
in arriving-channel and leaving-channel than staying-channel. The
distribution of people in city address the main road. Specifically,
Rush 1 only appears in weekdays, corresponding to go-to-work and
off-work rush. Rush 2 appears both weekdays are non-weekdays.
Compared to Rush 1, people presents more staying, less leaving
and arriving.

Work States: These state include Work 1 andWork 2 state, both
appearing in only weekdays. In these state, most people are working
reflected by high values of staying-channel in official areas. Thus,
we conclude in these states most people are at work. Besides, in
Work 2, people’s movement is more frequent than in Work 1. We
are surprised to find that people’s movement in noon is close to
that in the beginning and end of office time.

Relax States: These states include Relax 1,2,3. Relax 1 covers
most day-time in holidays when many people travel far away from
the city. Relax 2 covers day-time in weekends, 22:00-22:30 and
7:30-8:00 in weekdays and it presents larger value in all three chan-
nels than Relax 1. Relax 3 appears mostly after Relax 2 or in non-
weekdays mornings, with much lower arriving value and leaving
value than Relax 2.

For Shanghai, the state time series is shown in Fig. 7(a), and the
24-hour pie chart is shown in Fig. 7(b). Since the dataset of Shanghai
covers only five days, we can only observe the period of day. But
the distribution of state on the time axis is still very symmetrical
and neat. We summarize the characters of each state as follows:

Sleep State: This state mainly covers 23:30-06:00. Most peo-
ple are sleeping and few people are moving in the city. Values in
arriving-channel and leaving-channel are very low.

Work States: These states include Work 1 and Work 2. Most
people are at work with slight movement in the specific office
district. Specifically, people in Work 2 state have more movement
than Work 1.

Rush States: These states include Morning rush, Afternoon
rush and Saturday morning. In these rush states, people’s moving
is much stronger than work and sleep states. Movement in theses
states addresses downtown areas. The value of leaving-channel in
Morning rush higher than that of arriving-channel. However, it
is just opposite in Afternoon rush. In Saturday morning, value in
both leaving-channel and arriving-channel is high, suggesting the
movement in Saturday morning is more directionless than that in
weekdays.

Relax States: These states include Weekends relax and Evening
relax. The movement is more frequent than work hours and less
frequent than rush hours, as well as less concentrated in office areas
and downtown areas. This indicates people are moving all around
the city without very heavy traffic. Thus we conclude people are
moving for relaxing in these two states.

Home State: This state usually covers 21:30-23:30 and 6:00-7:00
in all days. It is similar to Relax states, for they belong to the same
root state according to Fig. 5. However the values of leaving-channel
and arriving-channel are smaller than that in Relax states, but larger
than that in Sleep states. Thus Home state corresponds to the time
when people are at home with few movement.

To conclude, observing the state in the 24-hour pie chart from
clockwise, we have that the dynamics of city frommorning to night,
from day to month, which reveal the regularity of people’s mobility
behavior from inactive to active, and last back to inactive in circle
of one day.

4.4.3 Special States Patterns. For Beijing’s data covers longer time,
we compare its dynamics between different days and find some
spatial patterns. Some of our results well match people’s intuition
while some give surprises.

Weekends VS Holidays: Two holidays are detected through
our method, i.e., Qingming Festival and May Day. People have
intuition that weekends and holidays are different, but wonder
why and how. As showed in Fig. 6, in weekends, Relax 3 covers
very morning time and Relax 2 covers other day time and some
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evening time. However in holidays like Qingming Festival and
May day, Relax 1 covers almost all the time. Relax 3 covers very
morning time and almost all the evening time. This shows that
people’s movements pattern are similar in weekends’ and holidays’
mornings and evenings, while differ in their day-time. we conclude
that in holidays’ day-time, people tend to travel far away from the
city, while in mornings and evenings, people haven’t set off or have
backed the city, following the same pattern as weekends.

Last night of holidays: We usually have a sense that on the
last night of holidays, our pace of life back to normal. Interestingly,
we find that in the last night of Qingming Festival, city’s dynamic
back to weekends patterns, where a Rush 2 state appears first, then
followed Relax 2 and Relax 3. It matches with our intuition that
people come back city in the last day of holiday, causing a traffic
jam, then most people get home while some people still hang out.
Note that our data only covers the first two days of May Day, so
this pattern doesn’t appear in May Day.

Symmetric night: We find that sleep states are more symmetric
than expected. This pattern is for all the days, regardless weekdays
or not. As showed in Figure 6, city’s states in night are : Home -
Sleep 3 - Sleep 2 - Sleep 1 - Sleep 2 - Sleep 3 - Home. Though this
comes from people’s movement patterns, but well matched people’s
sleeping habits. The government can properly arrange resources
like illumination and construction according to this night dynamics.

Unexpected peace in afternoons: We find Home state sur-
prisingly appears in two holiday afternoons and one weekend af-
ternoon. This suggests people’s slight movement, which means at
these moments, the city is as ’quite’ and ’peaceful’ as about-to-sleep
hours.

4.4.4 City Images for States. To further explain the states obtained
through hierarchical clustering, we show the spatial distribution of
the three original mobility features for different time slots and com-
pare their difference. Limited by space, we only compareMorning
rush,Afternoon rush, Sleep 1,Work 1 states in Shanghai, whose
physical meanings are go-to-work rush, off-work rush, sleeping,
working as shown Fig. 8. The heatmap is colored with the relative
density.

1) Compared with working state, in sleeping state, people’s stay-
ing is distributed more uniformly with low arriving and leaving.
However, for working state, people are staying in some specific area
with higher arriving and leaving than sleeping state. The reasonable
explanation is that people are staying at home and the living area
in the city is distributed more uniformly than office areas.

2) As for go-to-work rush and off-work rush, the arriving-channel
and leaving-channel have higher values than other states. The dis-
tribution of mobility in city address the downtown area and main
road. These show that these two states are much about traffic. In-
terestingly, staying people in off-work rush are more than those in
go-to-work rush. And this may due to that people usually have a
uniform time to go to work, but do not have uniform off work time.
Someone keep staying office while others are on the way home. We
also find that the arriving-channel and leaving-channel in go-to-
work rush is similar to the leaving-channel and arriving-channel
of off-work rush. This implies that off-work rush is the opposite
process of go-to-work rush.

(a) Go-to-work rush

(b) Off-work rush

(c) Sleeping

(d) Working

Figure 8: City images for Shanghai. We show the spatial dis-
tribution of the three original mobility features for four
city states whose physical meaning are go-to-work rush, off-
work rush, sleeping and working.

4.5 Validation with App Usage
Considering that the numbers of Apps in each App category are
different, we can not compare the absolute usage count in the same
state directly. In order to address this problem, we use TF-IDF
statistic to analyze the relationship between App usage and city
states [27]. We denote U as the absolute usage count of each App,
where Ui, j means the usage of i-th App under j-th state. Thus, the
transformed App usageU ′ can be calculated as follows,

U ′
i, j =

Ui, j

ΣjUi, j
× log

ΣiUi, j

Ui, j
. (3)

The result is shown in Table 2,where we can observe that:
1) In Sleep state, the usage of all Apps are lowest.
2) In Work states, including Work 1 and Work 2, the usage of Stock
and Office are highest.
3) In Rush states, the usage of Transportation Apps is high in Morn-
ing rush, Afternoon rush, and highest in Saturday morning. Inter-
estingly, in Morning rush and Afternoon rush, the usage of Music
and Restaurant is highest.
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Usage Morning rush Afternoon rush Sat morning Relax 1 Relax 2 Home Work 1 Work 2 Sleep
Social 0.326 0.418*** 0.317 0.351 0.338*** 0.22*** 0.409 0.4 0.073
Video 0.342 0.412 0.336** 0.361*** 0.36* 0.238* 0.376 0.367 0.091*
Music 0.446* 0.436** 0.302 0.316 0.309 0.217 0.344 0.391 0.07

Reading 0.441** 0.391 0.321 0.318 0.291 0.207 0.393 0.402 0.068
Game 0.398*** 0.411 0.323 0.34 0.323 0.229** 0.379 0.381 0.087**

Shopping 0.338 0.413 0.31 0.353 0.308 0.189 0.427*** 0.423*** 0.059
Restaurant 0.226 0.461* 0.332*** 0.439* 0.355** 0.143 0.398 0.357 0.041

Transportation 0.354 0.402 0.369* 0.374** 0.304 0.208 0.386 0.385 0.076
office 0.356 0.392 0.316 0.334 0.306 0.206 0.429** 0.424** 0.086***
stocks 0.192 0.195 0.074 0.062 0.092 0.058 0.815* 0.489* 0.016

Table 2: The TF-IDF results for App usage, where * means the most frequently used APP in each state, while ** and *** means
the second and the third frequently used APP in each state, respectively.

4) In Relax states, including Relax 1 and Relax 2, the usage of Restau-
rant, Video, Transportation, Social Apps are high. Specifically, in
Relax 1 state where some people tend to travel far in weekends, the
usage of Transportation Apps is higher than that in Relax 2 state
where people get fewer movement.
5) In Home state, the usage of all Apps is low and the usage of Video
and Game are highest among them. People tend to stay home, rest
and relax.

These observations and conclusions support our interpretation
for the identified city states, and further demonstrate that urban
dynamics could be revealed from human mobility behaviors.

5 RELATEDWORK
Urban dynamics modeling: Forrester first summarized the pre-
vious researches about modeling bits and pieces of urban areas as
urban dynamics models in [16]. [6, 20] proved and extended the
model proposed by Forrester. In addition, Batty et al. [5] utilized
fine-grained cellular automata to model urban activities, which
can be adapted to simulate urban development over very different
time period. In recent years, [11] detected city areas depicting a
snap-shot of activity patterns of its people. With more attention
to temporal dimension, [21] used a Topic model to characterize
urban dynamics; [37] used the geo-tagged social data to analyzed
urban dynamics; [15] modeled city dynamics in a basic life pattern
space. We also reveal urban dynamics from the view of tempo-
ral dimension. Different from previous works, we divide the city
into different hierarchical states and characterize urban dynamics
as the transform of city states. Moreover, we consider the spatial
distribution of human mobility in the city as a factor influencing
urban dynamic and use an image processing method to capture
such distribution patterns.

Mobility pattern revealing: Revealing the hidden pattern in
mobility data becomes popular these years [7, 9, 29, 30]. From the
view of individuals, [26, 28, 31] revealed the pattern of people’s
behaviors. From the view of regions, [3] explored significant places;
[35, 38] predicted the function of regions; [15] used a non-negative
tensor factorization approach to decompose human mobility into
variations among regions and times; [33] revealed the daily activity
pattern of specific regions. From the view of events, [13] detected
special event by analyzing spatio-temporal data; [8] analyzed cell-
phone mobility and the relationship between events and attendees.
To best of our knowledge, we are first to use mobility data to un-
derstand urban dynamics from the view of the whole city. Our
analyzing target is not a single region, but the whole city composed
with numerous regions. Thus we use image processing method

Saak to capture the spatial distribution pattern of human mobility.
Our analysis of App usage gives more interpretation to our results.

Image transformation and its application: In this paper, we
use Saak transform [22] to extract the spatial distribution pattern
of mobility for city images. Saak transform is a spatial-spectral
transform like the discrete cosine transform [2] and the Wavelet
transform [12]. Applications for these transforms includes image
coding [4], image compression [32], face recognition [18], etc. To
best of our knowledge, we are the first to apply image transfor-
mation in urban dynamics detection. There are also deep learning
methods for image transform, i.e., unsupervised feature extraction
[14, 17, 34]. However, they are hard to train and require a large
number of training samples, making it not realistic in our problem.

6 CONCLUSION
In this paper, we propose a novel system UrbanRhythm to reveal ur-
ban dynamics hidden in human mobility data from the view of the
city. We divide the city into different time slots, classify those time
slots into hierarchical city states and finally characterize the urban
dynamics as the transform of city states along time axis. Extensive
experiments on two real-life datesets of different cities demonstrate
the efficiency of our method. We give interpretations for the iden-
tified city states which pave the way for more applications, such
as traffic monitoring, resource scheduling and urban planning. We
employ a TF-IDF analysis on the relationship between App usage
and city states to validate our interpretation. Some special dynamic
patterns are discovered and analyzed as well. This paper opens
a new perspective to investigate urban dynamics and to reveal
the patterns in mobility data. Our future work will be discovering
how different factors influence city dynamics, including short-term
factors like weather and long-term factors like season.
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