
Mapping Road Safety Features from Streetview Imagery: A Deep
Learning Approach

Arpan Man Sainju
asainju@crimson.ua.edu

Department of Computer Science
The University of Alabama

Tuscaloosa, Alabama

Zhe Jiang
zjiang@cs.ua.edu

Department of Computer Science
The University of Alabama

Tuscaloosa, Alabama

ABSTRACT
Each year, around 6 million car accidents occur in the U.S. on

average. Road safety features (e.g., concrete barriers, metal crash
barriers, rumble strips) play an important role in preventing or mit-
igating vehicle crashes. Accurate maps of road safety features is an
important component of safety management systems for federal or
state transportation agencies, helping traffic engineers identify loca-
tions to invest on safety infrastructure. In current practice, mapping
road safety features is largely done manually (e.g., observations on
the road or visual interpretation of streetview imagery), which is
both expensive and time consuming. In this paper, we propose a
deep learning approach to automatically map road safety features
from streetview imagery. Unlike existing convolutional neural net-
works (CNNs) that classify each image individually, we propose to
further add Recurrent Neural Network (Long Short Term Memory)
to capture geographic context of images (spatial autocorrelation
effect along linear road network paths). Evaluations on real world
streetview imagery show that our proposed model outperforms
several baseline methods.
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1 INTRODUCTION
Every year, around 6 million car accidents occur in the U.S. on

average [13]. Traffic safety has long been an important societal issue.
In order to avoid or mitigate vehicle crashes, traffic engineers place
roadside barriers to prevent out of control vehicles from diverting
off the roads and hitting the roadside hazards. Such road safety
features can also prevent vehicles from crossing into the path of
other vehicles. During winter season, vehicles can become more
difficult to control on icy and slippery road surface, particularly
when the vehicle speed is high. Barriers on the roadside can act as a
safety precaution in such cases. Other safety features such as rumble
strips help alert inattentive drivers who are deviating from their
lanes. Figure 1 shows three different common type of road safety
features, rumble strip, concrete barrier, and metal crash barrier.
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Federal, state and local governments spent several hundred billion
dollars each year on transportation infrastructure development and
maintenance [16]. Mapping safety features along road networks
can play a crucial role in managing and maintaining road safety
infrastructures. Traffic engineers can use the detailed safety feature
map to identify locations where new safety infrastructure should
be invested.

In current practice, mapping road safety features are mostly done
manually by well-trained traffic engineers driving through road
networks or visually interpreting streetview images. A streetview
image is a geo-referenced image taken at a specific location on
the ground. One common example is Google Streetview Imagery
collected by vehicles equipped with GPS and cameras driving along
streets on road networks. However, such a manual process is both
expensive and time-consuming. Given the large amount of infor-
mation to collect, the cost of these approaches quickly become
prohibitive.

The focus of this paper is to develop a deep learning algorithm
that can automatically map road safety features from streetview
imagery. The results can be used by the transportation agencies
in management and maintenance of road safety infrastructures, as
well as planning the investment on new infrastructures. Specifically,
we can utilize a small set of manually labeled imagery (whose road
safety features are visually inspected) to learn a classification model.
Then the model can be used to classify safety feature types on a
large number of unlabeled imagery along the road network.

However, mapping the road safety features based on streetview
imagery poses several unique challenges. First, streetview images
are not independent and identically distributed along a road net-
work. In contrast, the safety feature types of consecutive images
along a same road network path often resemble each other (also
called the spatial autocorrelation effect). Second, the spatial scales
of road safety features may vary across different class categories.
For example, concrete barrier is often very long (e.g., miles). In con-
trast, metal crash barriers are much shorter (e.g., hundred meters).
Third, individual images may be imperfect due to some noise or
obstacles. For example, a safety feature can be blocked by a large
vehicle and thus become invisible in an image.

To address these challenges, we propose a deep learning model
based on both convolutional and recurrent units. We use covolu-
tional neural network (CNN) model to extract semantic features
from individual images. We also use a recurrent neural network,
Long Short-TermMemory (LSTM), to model spatial sequential struc-
ture on extracted features from consecutive images along a road
network path (the spatial autocorrelation effect). The integration
of CNN and LSTM enables our deep learning model to utilize not
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Figure 1: Three common classes of road safety features on Google Streetview Imagery. (a) Rumble strips (b) Concrete barrier
(c) Metal crash barrier

only the content of individual images but also the geographic con-
text between images. Evaluations on real world streetview images
collected from highways in Alabama show that our approach out-
performs several baseline methods in classification performance.

In summary, the contributions of this paper are listed below:

• To the best of our knowledge, we are the first to explore a
deep learning approach on Google Streetview imagery for
road safety feature mapping.

• We propose to use an integrated deep learning model that
combines CNN and LSTM. The integrated model can utilize
not only the content of individual images but also the spatial
sequential structure between images.

• We validate our approach on real world streetview imagery
collected in Alabama.

The outline of the paper is as follows. Section 2 discusses some of
the related works. Section 3 formally defines the problem. Section 4
introduces the approach. Section 5 summarizes the results of our
experimental evaluation on a real world dataset. Section 6 concludes
the paper with discussions on future works.

2 RELATEDWORKS
In this section, we briefly review the relevant research on trans-

portation safety and deep learning techniques for spatial and spa-
tiotemporal data.

2.1 Transportation Safety
Related work in transportation safety often focuses on analyzing

the protective effect of different road safety features (e.g., roadside
barriers) [12, 18, 34]. For example, studies in [3, 7, 9] quantify the
protective effect of barriers with regards to motorcyclist injury.
Work in [4] analyzes the performance of roadside barriers related
to vehicle size and type. [27] studies how to increase the effec-
tiveness of the roadside barriers in safety protection. For example,
studies found that concrete barriers can hold high-energy truck
crash, but can also cause more fatalities. Some recent work focuses
on developing energy absorbing barrier [21]. Beside the protective
effect, other studies on roadside barriers focus on the impact on
mitigating near-road air pollution [25]. The study on effect of solid

barriers on dispersion of roadway emissions in [8, 22] shows that
roadside barriers is one of the most practical mitigation methods.
There are also works that analyze spatial patterns from traffic ac-
cident event locations such as network hotspots and colocation
patterns [17, 19, 20]. [11] proposes efficient algorithms to identify
primary corridors from cyclists’ GPS trajectories on urban road
networks to study riding behaviors for safety issues. [15] shows
techniques to detect coarse scale hotspots of road failure events
through geo-tagged tweets from social media.

Recently, researchers have usedGoogle Streetview imagery along
the road network for traffic sign detection for roadway inventory
management [1, 2, 26]. Other works use streetview imagery to es-
timate the demographic makeup of neighborhoods [6], to assess
street-level greenness in an urban area [14]. To the best of our
knowledge, there is little research on utilizing streetview imagery
to automatically map road safety features.

2.2 Deep Learning for Spatio-Temporal Data
In recent years, deep learning techniques have shown great

growth in the field of spatiotemporal data mining [10, 23]. One com-
mon approach is to integrate deep convolutional neural networks
(CNN) with recurrent neural networks such as Long Short-Term
Memory (LSTM). The CNN component can be used to model spatial
dependency structure in one temporal snapshot, while the LSTM
component can be used to model temporal dynamics between differ-
ent snapshots. For example, [33] uses fully convolutional networks
with LSTM to estimate vehicle count maps based on city cameras.
[30] uses CNN-LSTM model together with multi-view learning to
predict taxi demand. [28] uses a one-dimensional CNN to capture
spatial features of traffic flow and two LSTM models to capture
the short-term variability and periodicities of traffic flow. [29] ad-
dresses the traffic prediction problem with a new spatiotemporal
model. It uses a flow gating mechanism to learn the dynamic simi-
larity between locations, and uses a periodically shifted attention
mechanism to handle long-term periodic temporal shifting. [31, 32]
researches on better traffic accident prediction to improve trans-
portation and public safety. In these existing works, LSTM model
is often used to model temporal dynamics between multiple spatial
snapshots. The difference from our work in this paper is that we
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use LSTM to capture linear spatial sequential structure between
consecutive images along a road network path.

3 PROBLEM DESCRIPTION
In this section, we discuss some basic concepts and describe our

problem.
Road network: A road network is a network whose nodes are road

intersections, and whose edges are road segments. At the same time,
a road network is also a spatial network whose nodes are spatial
points and whose edges are spatial line strings. In other words, a
road network has both graph properties and geometric properties.

Streetview imagery: Streetview imagery is a sequence of geo-
referenced images whose locations are embedded on road network
edges (in the form of line strings). The imagery is collected through
driving a vehicle equipped with GPS and camera, so that each image
can be geo-referenced based on the GPS time stamp. In this paper,
we used Google Streetview API to select imagery at a regular spatial
interval of 20 meters.

Road safety feature: A road safety feature is defined as the mea-
sure or infrastructure placed on a road to improve safety. We con-
sider three most common safety features: rumble strips, concrete
barrier and metal crash barrier. Figure 1 shows examples of the
three safety features from Google Streetview imagery.

• Rumble Strips: Rumble strips (Figure 1(a)) are milled grooves
or rows of raised pavement markers placed perpendicular
to the direction of travel, or a continuous sinusoidal pattern
milled longitudinal to the direction of travel. It creates a vi-
bration and rumbling sound transmitted through the wheels
into the vehicle interior which can alert the drivers who
have drifted from their lanes.

• Concrete barrier: Concrete barrier (Figure 1(b)) is a rigid bar-
rier. It is easy to maintain. This type of barrier is often used
on roads where traffic in opposing direction is flowing in
close proximity due to lack of space.

• Metal crash barrier: Metal crash barrier (Figure 1(c)), also
known as guardrails, is usually made from steel beams or
rails. It ensures minimum damage to the vehicle and its
occupants by absorbing the impact energy of the colliding
vehicle. It can also act as a good visual guide during night
time for the driver to maintain their lane position.

Problem Definition: Given a road network with geo-referenced
streetview imagery sampled at an equal distance interval, as well
as a small collection of labeled imagery sequences (each image has
three binary class labels corresponding to the existence of rumble
strips, concrete barrier, and metal crash barrier respectively), the
road safety feature mapping problem aims to learn a classification
model that can predict the labels for all unlabeled images on the
road network. Since each image may contain multiple types of
road safety features at the same time, our problem is a multi-label
classification problem.

4 APPROACH
In this section, we introduce our proposed deep learning ap-

proach. Figure 2 illustrates the overall framework of our proposed
model.The bottom component shows the data collection process.
We sample a number of spatial points along road network edges

at an equal distance interval (e.g., 20 meters), and then use Google
Streetview API to download geo-referenced imagery at those point
locations. We fixed the distance interval of 20 meters because the
average length of some road safety features such as metal crash
barrier is only a few hundred meters. If we select a higher distance
interval, there may not exist enough images for short extent barrier
such as metal crash barrier. Although lower distance interval can
provide fine-grained dataset, it increases the number of streetview
images to be downloaded which incurs extra cost. The middle com-
ponent of our proposed models is based on retrained CNN model
to extract low dimensional features from individual images. The
last component is LSTM layer. In contrast to existing works, our
LSTM does not capture temporal dynamics between different spa-
tial snapshots, but represents spatial sequential pattern between
consecutive imagery along road network edges.

4.1 Extract Image Feature with CNN
Convolutional Neural Network (CNN) was developed mainly

for image classification. CNN introduces the concept of parameter
sharing which allows the model to learn less number of parameters
in comparison to regular neural network. Similar to regular neural
networks, CNN also consists of a sequence of layers. We briefly
describe each layer in CNN below.

Input Layer: Input Layer holds the raw pixel color values (RGB) of
the images. Usually, the pixel values are normalized to stabilize the
learning process and dramatically reduce the number of training
epochs required to train deep learning models.

Convolution Layer: Convolutional layer transforms the input
using convolution operation. A convolution operation is element-
wise multiplication of a pixel and its neighborhood pixels color
value (RGB) by a matrix. It is also known as convolution filter.
Different filters are used to convolve around all the pixels in an
image. Filters like horizontal and vertical edge detecting filter can
extract the linear feature from the image. Other complicated filters
such as sobel filters can extract non-linear edges. In CNNs, filters
are not defined, they are learned during the training process. By
stacking layers of convolutions on top of each other, we can get
more abstract and in-depth information from a CNN.

ReLU Layer: ReLU stands for Rectified Linear Unit, which is a
type of activation function commonly used in neural networks.
Activation functions are applied to introduce non-linear properties
to the network. The function returns 0 if it receives any negative
input. However, for any positive value x , the function returns the
same value back. So, it can be written as f (x) = max(0,x). ReLU
activation function is computationally less expensive as there is no
complicated math, which can reduce the model training time.

Pooling layer: The function of pooling layer is to reduce the
spatial size of the input. It is also known as downsampling layer.
Pooling layer can reduce the number of parameters and computa-
tion in the network. It applies a filter (usually of size 2x2) to the
input volume. Pooling filters can be based on different operations
such as max, min or average. The most common one is max filter
which extracts the max value from the filter region.

Fully Connected Layer: Fully connected (Dense) layer takes an
input volume (output of activation function) and outputs a N-
dimensional vector. Similar to regular neural networks, neurons in
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Figure 2: Overall framework of our deep learning approach

a fully connected layer have full connections to all activations in
the previous layer.

For our proposedmodel, we use the current state-of-art Inception-
ResnetV2 [24] model to extract features from the streetview images.
We use the keras implementation of Incpetion-ResnetV2 pre-trained
on ImageNet [5] dataset with 1000 classes. Incpetion-ResnetV2 com-
bines the idea of residual connections to inception architecture. In
residual connection, each layer feeds into the next layer and di-
rectly into the layers about few hops away. Residual connections
are important for very deep architecture. When deeper networks
starts converging, the accuracy can saturate at a point and eventu-
ally degrade. Residual connections are designed to overcome this
degrading problem. As the Inception-v4 network is very deep with
around 200 layers, combining Inception architecture with residual
connections can be beneficial.

We removed the final dense layer with softmax activation func-
tion because the network was pretrained to classify 1000 classes. In
our work, we only have 3 classes (rumble strips, concrete barrier,
and metal crash barrier). Next, we add a dense layer with 250 nodes

after the last average pooling layer (with 1,536 nodes). We reduce
the feature dimension because we are classifying our dataset into a
lower number of classes than the pretrained model. Finally, we add
a dense layer with 3 nodes with a sigmoid activation function so
that each node provides a probability value for one class label.

As shown in Figure 2, we retrain the CNN model using our
streetview dataset. The input to the CNN model is a set of 224x224
streetview images. After retraining, we extract the output of dense
layer with 250 nodes to get a feature vector of 250 dimensions
for each image in the sequence. We then create a set of feature
sequences to feed into the LSTM model.

4.2 Model Spatial Linear Pattern with LSTM
In order to model spatial linear (sequential) structure along a

road network path, we used the LSTMmodel on a sequence of image
features extracted by the CNN model. LSTM is a type of recurrent
neural networks that uses gating functions to avoid the exploding
and vanishing gradient issues. The gate function can help amodel to
memorize the state of previous units in a sequence. Such recurrent
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structure is well-suitable to capture the spatial autocorrelation effect
across consecutive images. According to the first law of geography:
"everything is related to everything else, but near things are more
related than distant things." For example, concrete barriers are
often very long spanning over several miles. Metal crash barriers,
in contrast, have a shorter spatial scale within a few hundredmeters.

Figure 3: LSTM Unit

LSTM models a sequential structure by maintaining a sequence
of memory cells (ct with t as the spatial location index). In each
spatial location t , LSTM takes an input feature sit , hidden state
ht−1 and cell state ct−1. Figure 3 shows a LSTM unit with a cell
state(ct ) and three different gates: input gate, output gate and forget
gate. The forget gate (ft ) decides how much information from a
previous cell unit is ignored before coming to the next cell. The
input gate (it ) decides how much contribution an input feature
vector makes to the current cell state. Finally, the output gate (ot )
decides what the current LSTM unit is going to output (current cell
state ct and current hidden state ht ) based on the cell state. The
LSTM transaction equations are as follows,

f it = σ (Wf h
i
t−1 +Uf s

i
t + bf )

iit = σ (Wih
i
t−1 +Uis

i
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i
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uit = tanhWuh
i
t−1 +Uux

i
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i
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i
t ∗ ut

hit = ot ∗ tanh(c
i
t )

(1)

where σ denotes the sigmoid activation function, tanh is hyperbolic
tangent function and ∗ denotes element-wise product.W and U
denote model parameters. As Figure 2(c) shows, our LSTM model
consists of 4 hidden layers. The first layer is an LSTM layer with an
output dimension of 100 units. The second layer is a 20% dropout
layer. The third layer is a dense layer with 50 nodes. The last layer
is a sigmoid transformation layer with 3 nodes, corresponding to
the three independent class labels (rumble strips, concrete barrier,
and metal crash barrier). This is different from the common softmax
layer whose output node values sum into one because class labels
are assumed to be exclusive to each other. We used the binary cross-
entropy loss. To get final output labels for each image, we used a
threshold of 0.5 on the sigmoid outputs.

5 EXPERIMENTAL EVALUATION
In this section, we compared our proposed method with baseline

methods on two real world datasets in classification performance.
Experiments were conducted on a Dell workstation with Intel(R)
Xeon(R) CPU E5-2687w v4@3.00GHz, 64GB main memory, and a
Nvidia Quadro K6000 GPU with 2880 cores and 12GB memory. We
used Keras with Tensorflow as backend to run the deep learning
models. Candidate classification methods included:

• CNN only: We used Inception-ResnetV2 CNN model on
streetview images with three classes: rumble strips, concrete
barriers and metal crash barriers. We added one more dense
layer with 250 nodes and a ReLU activation function before
the final sigmoid layer with 3 nodes.

• CNN-DT: We extracted output of second last layer (with
250 nodes) from our CNN only model (Inception-ResnetV2)
as feature vectors and fed it into a Decision Tree (DT) model.
We used the scikit-learn package in Python.

• CNN-RF: We extracted output of second last layer (with 250
nodes) from our CNN only model (Inception-ResnetV2) as
feature vectors and fed it into a Random Forest (RF) model.
We used the scikit-learn package in Python.

• CNN-LSTM: This is our proposedmodel to address the issue
of multi-label classification using shared CNN-LSTM model
for all three class labels together.

Unless specified otherwise, we used default parameters in open
source tools in baseline methods.

5.1 Dataset Description
To evaluate the performance of the proposed model, we selected

two different road segments to extract streetview imagery for train-
ing, validation, and testing. We selected a road segment in i-20 East
for training and validation and a road segment in i-20 West for test-
ing. We divided the road segments into an equally distanced set of
geolocation coordinates. We set the distance interval of 20 meters.
We then used Google Street View API to download the streetview
images respective to each coordinate. We have three safety features
classes: rumble strips (RS), concrete barriers (CB) and metal crash
barriers (MCB). Table 1 shows the number of images and class
distribution for training, validation and test dataset.

Table 1: Class Distribution

Number
of Images

Rumble
Strips

Concrete
Barriers

Metal
Crash
Barriers

Training Set 983 868 352 324
Validation Set 594 493 224 96
Test Set 950 857 354 279

To train our proposed CNN-LSTM model, we used the input
vector length of 50 spatially continuous images for each sequence.
We used a sliding window of 1 on training and validation data set
to create training and validation sequences for CNN-LSTM model.
We generated 883 training and 544 validation sequence.
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5.2 Hyperparameter Settings
For our proposed model, we set the number of input vector in

LSTM as 50, and the dimension of the hidden state of LSTM as
100. We set the learning rate of 10−6 for both CNN and CNN-LSTM
model. Both CNN and CNN-LSTMmodels were trained using Adam
optimizer. The training batch size for CNN model was 32 and that
for CNN-LSTM was 1.

5.3 Classification Performance
Figure 4 shows the CNN-LSTMmodel training performance. The

training and validation loss are 0.06191 and 0.32520 respectively. We
achieved training accuracy of around 0.98 and validation accuracy
of 0.85. We set the probability threshold of 0.5. A safety feature
probability value above the threshold indicates presence of the
safety feature in the image. We compared the F-score of different
candidate methods on precision, recall, and F-score. Results were
summarized in Table 2. Most of the candidate method achieved over
0.85 average F-score. But, our proposed model outperformed all
the baseline methods with an average F-score of 0.91. The average
F-score for CNN with DT and RF is lower than CNN only. It may
be because CNN-DT and CNN-RF takes the output of 2nd last layer
(with 250 output dimension) and fits the models using it as the
features. But the last layer in CNN only model, a dense layer with 3
nodes, have extra learnable parameters which can help CNN only
model learn better.

Figures 5, 6 and 7 shows the prediction maps for three safety
feature classes from CNN and CNN-LSTM models, together with
the ground truth class map on the test path. We can observe that
the CNN-LSTM model was able to reduce the isolated misclassified
images from CNN. CNN only model may make some classification
error on some images within a sequence due to not taking spatial
dependency into consideration. Our proposed CNN-LSTM model
can help to correct such isolated errors by incorporating spatial
dependency in the learning process.

Figure 8, 9 and 10 shows samples from four consequentive streetview
images for each safety feature class, where the CNN only model
failed to correctly classify one or two images inbetween. For exam-
ple, in Figure 8, the third image (c) was misclassified in the CNN
model but correctly classified in the CNN-LSTM model due to in-
corporating the spatial sequential structure. Similarly results were
shown in Figure 9 and Figure 10.

6 CONCLUSION
In this paper, we proposed CNN-LSTM based spatial classifica-

tion model for mapping safety features along road networks. Our
CNN-lSTM model can capture spatial linear structure between con-
secutive images along a road network path. Results on real world
Google Streetview images collected in Alabama showed that our
model outperforms several baseline methods.

In futurework, we plan to conduct a case study onmore streetview
images over the entire road networks in Alabama. We will also in-
vestigate more general spatial network structure with graph-LSTM.
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Figure 4: Training and Validation performance over 50
epochs

Table 2: Classification on Test Dataset

Classifiers Class Precision Recall F Avg. F

CNN-DT
RS 0.95 0.83 0.89

0.85CB 0.81 0.76 0.78
MCB 0.79 0.82 0.80

CNN-RF
RS 0.94 0.87 0.90

0.87CB 0.78 0.82 0.80
MCB 0.89 0.86 0.87

CNN only
RS 0.94 0.95 0.95

0.89CB 0.74 0.85 0.79
MCB 0.91 0.78 0.84

CNN-LSTM
RS 0.43 0.98 0.96

0.91CB 0.74 0.91 0.82
MCB 0.90 0.83 0.86
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