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ABSTRACT
What did it feel like to walk through a city from the past? In this
work, we describe Nostalgin (Nostalgia Engine), a method that can
faithfully reconstruct cities from historical images. Unlike existing
work in city reconstruction, we focus on the task of reconstructing
3D cities from historical images. Working with historical image
data is substantially more difficult, as there are significantly fewer
buildings available and the details of the camera parameters which
captured the images are unknown. Nostalgin can generate a city
model even if there is only a single image per facade, regardless
of viewpoint or occlusions. To achieve this, our novel architecture
combines image segmentation, rectification, and inpainting. We
motivate our design decisions with experimental analysis of indi-
vidual components of our pipeline, and show that we can improve
on baselines in both speed and visual realism. We demonstrate the
efficacy of our pipeline by recreating two 1940s Manhattan city
blocks. We aim to deploy Nostalgin as an open source platform
where users can generate immersive historical experiences from
their own photos.

CCS CONCEPTS
•Applied computing→Architecture (buildings);Computer-
aided design; • Computing methodologies → Machine learn-
ing; Shape modeling; • Human-centered computing → Human
computer interaction (HCI).
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1 INTRODUCTION
There is significant interest in the automatic generation of 3D
city models. Such models are used in Google Maps and Google
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Figure 1: A 3D reconstruction of the NE Corner of 9th Av-
enue, 16th Street, New York, NY as it looked in the 1940s.

Earth, in popular video games, in urban planning simulations, and
more. However, these models are prohibitively expensive to create.
Traditionally, large studios spend thousands of dollars and man-
hours to create realistic worlds. Commercial procedural modeling
engines are a powerful tool to address some of these issues, but
they are limited in their accuracy and require significant manual
effort to fine tune.

There is also significant interest in historical image data. Indi-
viduals are fascinated with historical data as a means of capturing
nostalgia, pursuing education, connecting with family and elders, or
preserving culture. Individuals are especially excited about histori-
cal data that allows them to interact with bygone eras, experiencing
settings and environments that no longer exist. We note that city
photography is a natural source of realistic detail, and that there is a
significant wealth of historical and modern city imagery. With this
in mind, we are interested in the problem of automatically generat-
ing city models from historical images of cities to expose historical
data to users through an immersive walkthrough experience.

Historical images are difficult to access and even more so to
utilize, especially in comparison to modern image and video data.
Historical images are inherently more sparse than modern images,
in that there are simply fewer available. Thus, when working with
historical data, it is difficult to create large datasets with specific
requirements, such as all images being occlusion-free, or taken
from the same camera angle. It is also difficult to find multiple
historical images of the same subject. Finally, historical metadata is
nonexistent. Unlike modern images, which often come with EXIF
information like geolocation and camera intrinsics, historical data
often only includes raw pixel information.

Recent advances in computer vision have enabled the automatic
recovery and extraction of missing information from images. Com-
puters have gained the ability to semantically parse [8], rectify [28],
and inpaint [26] images, and extract 3D scene understanding [19]
from images. Research has been done to extract city geometries
from images as well [18]. Though these advances in computer vi-
sion are powerful, they often come with caveats and assumptions
that make broad usage difficult. Many approaches require intrinsic
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or extrinsic camera parameters like focal length or relative geolo-
cation; others are limited to toy datasets or require multiple input
images; others still require fairly significant human intervention.
These limitations carry over to 3D city generators. For example, the
work of [19] requires a color image with few occlusions and a user-
generated trace of the building model to create a single building.
These limitations are not scalable and are unsuited for historical
data, which is sparse and has few image guarantees.

In this work, we describe a scalable, modular 3D city genera-
tion pipeline named Nostalgin (Nostalgia Engine) that leverages,
combines, and builds on advances in computer vision. Nostalgin is
designed to uniquely handle the difficulties that arise when dealing
with historical image data. Our novel contributions are as follows:

(1) a combined deep and algorithmic approach to image segmen-
tation that produces extremely tight segmentation masks;

(2) a novel approach to image rectification that can uniquely
handle historical image data;

(3) a method for efficient deep image inpainting on extremely
large images;

(4) a modeling system to place rectified facade images into a 3D
world.

For each section, we motivate our design choices and provide
experimental analysis demonstrating the qualitative and quantita-
tive efficacy of each component. We also analyze our overarching
design and discuss approaches for better run-time and memory
cost. Finally, we present two reconstructed blocks of Manhattan
that are automatically generated using images taken from historical
datasets of New York City in the 1940s.

2 RELATEDWORK
For non-deep-learning related work, we refer primarily to the re-
view in [18], which describes many important methods for accu-
rate modeling 3D cities. These approaches can broadly be split by
the type and amount of ingested data. Early approaches focus on
street-level image data as an obvious source of information. Several
works extract 3D geometry using multi-view image reconstruction
[1, 2, 10], which often relies on understanding the general loca-
tion of an image in order to make sense of the contents. These
works contrast to single-view reconstruction, which use heuristics
such as general shape and symmetry to mimic real world con-
structs [11, 14, 15], or are highly interactive and require user input
[9, 11, 20]. More recently, development of hardware has made aerial
imagery, satellite imagery, and LIDAR mapping significantly more
viable. These forms of data allow for new kinds of 3D reconstruc-
tion. For example, [12] proposes a method of combining street-level
imagery, GIS footprints, and polygonal meshes (processed aerial
images) to extract models, while [13] proposes utilizing aerial urban
LIDAR scans. For completeness, we note that procedural modeling
[22] and manual modeling [25] are popular and well utilized in
many practical applications.

Due to the recent popularity of deep learning, a number of pub-
lications have proposed deep models to learn automatic reconstruc-
tion. Recent work has improved on extracting intrinsic camera
parameters and object poses [7], semantically parsing facades [17],
or combining machine learning techniques with procedural gram-
mars for reconstruction [19]. We note that many approaches to

deep 3D reconstruction are not scalable and are very difficult to
train outside of academic datasets (e.g. ShapeNet [5] which con-
sists of low poly or voxel models that are not suitable for a city
reconstruction task).

In dealing primarily with historical data, we tackle a different
task than many of the above methods. We cannot rely on any
guarantees regarding multiple views, and do not have access to
tools such as LIDAR, aerial data, satellites, or even cameras that
measure parameters like focal length and position. We aim for a
high degree of accuracy, potentially at the expense of detailed 3D
features. Finally, we desire a system that minimizes human input
in order to generate entire cities at scale.

3 PROPOSED METHOD
In this section, we describe the design of Nostalgin. We identify four
key tasks in our image-to-model conversion process: image parsing,
viewpoint normalization, occlusion removal, and 3D conversion.
For each section, we provide a description of the sub-problem, our
requirements for the solution, and the design of our final component.
Experiments motivating our design choices are in Section 4.

3.1 Generalizations and Assumptions
Because we are working with historical image data, we try to min-
imize the number of requirements related to the contents of the
image and the metadata available. To that end, we design Nostalgin
to be as general as possible without relying on anything other than
the raw image data. At the same time, we purposely design our
pipeline to require minimal human intervention so that it can work
in massively distributed settings.

We generalize to the following conditions:
(1) as low as only one image per facade;
(2) possibly more than one facade in an image (see 3.2);
(3) arbitrary aspect ratio and resolution;
(4) arbitrary viewing angle, and no apriori knowledge of viewing

angle or relevant camera parameters (see 3.3);
(5) facade occlusions (see 3.4);
(6) grayscale;
These constraints significantly limit the amount of prior knowl-

edge we can bring to bear in Nostalgin, making the underlying
reconstruction task far more difficult and preventing usage of most
prior work. However, these assumptions allow us to generalize to
Nostalgin to real historical image data in a massively scalable way.

Our pipeline makes the following assumptions:
(1) the facades come from a Manhattan-world environment1;
(2) images are weakly geotagged such that we are given the

relative position of where each image was taken with respect
to neighboring images (see 3.5);

(3) the width for each facade is known relative to other facades.

3.2 Image Parsing
In order to gain insight from an image, we must first identify what
objects are in the image and where they are actually located in

1A Manhattan-world assumption is the assumption that most buildings are relatively
planar and lie on a cartesian grid, as in Manhattan. For example, we do not expect our
pipeline to accurately handle domes.
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Figure 2: Components in our modeling pipeline.

Figure 3: Examples of real world image data.

pixel space. This includes identifying key objects of interest, such
as one or many building facades, as well as identifying occlusions
that may be blocking the full building image. Any kind of parsing
should produce sharp boundaries around the parsed object in order
to provide shape information to later components and to ensure
that no pixel information is lost.

Deep neural network models have made incredible strides in im-
age segmentation and classification tasks. Thus, for our pipeline, we
utilize the popular MaskRCNN deep neural network architecture
[8]. We detect two classes of objects: building facades, and occlu-
sions. In particular, we aim to label people and cars as occlusions.
The MaskRCNN model is pretrained on COCO and fine tuned on a
set of roughly 30k images that are manually labelled with masks
around facades. A well known problem with this class of neural
segmentation models is that the model struggles with providing
extremely tight image boundaries. In order to address this issue, we
add an image-gradient-based postprocessing step known as alpha
matting [16]. Alpha matting significantly improves the contours of
our masks. Further analysis of the addition of alpha matting can be
found in Section 4.1.

3.3 Viewpoint Normalization
The second task within our pipeline is to normalize the image with
respect to camera viewpoint. This normalization takes the form of
rectifying facades defined by a set of masks in an image. The goal of
this normalization is to simplify downstream tasks to make it easier

to extract depth and infer missing contextual information. Because
we lack camera parameters and use real world images with many
confounding objects in the scene, we develop our own rectification
method based on previous work.

3.3.1 Low-Signal Line Detection. Almost all rectification approaches
rely on accurate line detection in an image. Real world data often
has complex structures that make line extraction difficult. Historical
images additionally suffer from poor resolution, scanning artifacts,
and image damage. As a result, we are unable to use off-the-shelf
line detection methods such as the Probabilistic Hough Transform.
Instead, we devise our own line detection algorithm that preserves
lines that are good candidates for vanishing point detection and re-
moves other lines. We provide brief analysis of other line detection
methods in 4.2.1.

In order to capture as much signal as possible, we first run Canny
edge detection with full connectivity and dynamically compute the
thresholds given image median x̃ and hyperparameter λ ∈ (0, 1) as
follows.

l = max(0, x̃(1 − λ)) and u = min(255, x̃(1 + λ)) (1)

where λ represents the tightness of our Canny thresholds. We then
join all continuous points into contours.

To detect facade position, we want our line detector to only
preserve straight lines. For each contour, we label every point as
"linear" or "non-linear" by computing the second discrete derivative.
Once labeled, non-linear points are removed and all remaining
points are re-linked into new contours. We define the angle at a
single point p along the contour C as

α(C,p) = arctan

(
dp
dC

)
(2)

Using this, we define the left-hand second derivative as

Lα (C,p) =
1
ks

ks∑
d=1

| |α(C,p) − α(C,p − d)| |θ (3)
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(a) Explanation for the distance
function d (vp, s) = α between a
line segment s and a finite van-
ishing point vp .

(b) Explanation for the distance
function d (l, s) between infinite
vanishing point l and segment s .

Figure 4: Duplicated from [21]: distance functions used to
determine fit between a line segment and an (in)finite van-
ishing point.

and the right-hand second derivative as

Rα (C,p) =
1
ks

ks∑
d=1

| |α(C,p) − α(C,p + d)| |θ (4)

where | |θ1 − θ2 | |θ is the measure of the smallest angle between θ1
and θ2, and where ks is the window size of the discrete derivative.
Using Equations 3 and 4 and given a linearity threshold for the
second derivative tα , we label each point along a contour and fit
line segments to each locally-linear sub-contour using RANSAC
[6]. The algorithm for defining local linearity is provided in the
Appendix.

3.3.2 Vanishing Point Detection. Vanishing point detection helps
convert lines into depth information. Detecting vanishing points is
a task traditionally solved in two steps: first, detected line segments
are used to accumulate a list of potential vanishing point candidates;
and second, the segments are used to rank the candidates.

During accumulation, we reduce the candidate search space by
deduplicating collinear line segments and vanishing point candi-
dates using quantization within our error bounds (see 4.2.2). During
voting, we modify Rother’s voting function such that the resulting
weights correspond to the percent of evidence accounted for by
the vanishing point2. Thus, we define that for a candidate vanish-
ing point a, set of line segments S , facade maskm, and alignment
threshold ta

vote(a, S,m) =

∑S
s

[
| |s | |2ω(s,m)(1 − d (a,s)

ta )

]
∑S
s [| |s | |2ω(s,m)]

(5)

where ω(s,m) is a weighting function defined as the count of pixels
on segment s within maskm normalized by the length of segment
s . This is done to ensure that only pixels within a facade mask
vote towards vanishing points for that facade. Note that function
d(a, s), shown in Figure 4, is taken directly from [21]. Also, note that
the alignment threshold ta measures the maximum distance d(a, s)
between a vanishing point and line segment that still constitutes
alignment.
2For example, a value of 1.0 indicates a perfect match with all segments, whereas a
value of 0.5 indicates that roughly half of segments match.

(a) Vanishing points and facade. (b) The rectification quadrangle.

Figure 5: Computation of the facade bounding-quadrangle.

We select the most highly weighted vanishing point as scored
using the corresponding facade maskm, and the second most highly
weighted vanishing point that is at least to degrees offset from the
first, to find two vanishing points representing facade orthogonal
lines.

3.3.3 Quadrangle Estimation. Once two vanishing points have
been chosen, forming a vanishing point aware minimum-bounding
quadrangle – i.e. the smallest quadrangle that adheres to the fa-
cade’s two vanishing points and also includes all of the facade’s
masked pixels – is relatively straight-forward. Given the facade’s
pixel-mask, we can readily compute the bounding box for the facade.
From this, we project lines from each vanishing point to the nearest
corners of the bounding box and form a quadrangle from the four
intersections created (see Figure 5). The resulting quadrangle is a
representation of the facade-plane projected onto the image-plane
and resized to contain all masked facade-pixels.

3.3.4 Rectification. In order to finish the rectification of the facade
in the image, we need to predict the aspect ratio of the final image.
Many existing approaches are able to leverage known camera pa-
rameters; however, working with general historical data naturally
precludes any reliance on such information. Instead, we predict
that the camera’s principal point is the center of the image and that
there is no skew in the image. This requires us to estimate only
the focal length, which can be approximated using vanishing point
geometry. We note that this can result in some error, but qualita-
tive results suggest that the visual impact of imperfect focal length
prediction is minimal within certain reasonable error bounds.

With a single quadrangle per-facade and an approximate focal
distance, we can directly apply [28] to determine the aspect ratio
of the resulting rectified image. The aspect ratio and quadrangle
vertices together give four corresponding points between the facade-
plane and the rectification-plane which are sufficient to compute a
rectification homography. This allows us to manipulate the facade
in the image such that it looks like the camera pose has shifted
to the front of the facade. Once we have the rectified facade and
the appropriate aspect ratio, we use the given width of the facade
image to scale the facade relative to its real world location context.

3.4 Occlusion Removal
The third task is to normalize the image with respect to occlusions.
This component also ingests a set of masks and an image, and
outputs an inpainted image with the inpainting occurring in the
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masked locations. Importantly, any approach used for inpainting
had to handle fairly high-resolution images (larger than 800 x 800
pixels) and had to work for large, arbitrary masks.

3.4.1 Inpainting Methods. We examine several deep and algorith-
mic approaches, and describe our analysis in Section 4.3. We build
on the Free Form inpainter suggested by [26]. Specifically, we create
a two-stage conditional fully-convolutional GAN with an SNPatch
Discriminator, trained on black and white images.

The Free Form approach is memory intensive for images larger
than 250x250 pixels. In order to solve this issue, we decrease the
width of the model by nearly 25% and double the stride of the con-
textual attention layer. We also develop a ‘Low Memory’ Inpainter
that takes an input image and a set of masks, splits the image to only
include the mask and a small surrounding area based on a preset
context radius, and inpaints each split separately. These approaches
to decreasing memory usage also decrease accuracy. We discuss
these tradeoffs in 4.3.2.

3.4.2 Dataset. A convenient aspect of the Free Form method is
that it learns how content extends across 2D geometry instead
of learning to represent a specific object class. This is especially
important in historical settings, where it is difficult to collect a large
dataset of a specific object. We collect a dataset of 10M modern and
historical images. We require only that each image has at least one
facade in the image. We convert each image to black and white,
and train the model on 600x400px random crops. We refer to this
dataset as the 10M dataset.

3.5 Modeling
The final task is to generate a 3D city model. This component
expects a set of cropped facade images that are to-scale, each with
relative location information. For this work, we assume that the
buildings will appear in a grid-like city block formation; as such,
the model only requires the left- or right-side neighbors of each
facade, whether two facades come from the same building, and the
location of each block relative to each other.

We utilize the facade location data to create a chain of facades
that wrap around each block, and then place the blocks relative
to each other. For each facade, we create a cuboid 3D model with
matching proportions; if more than one facade is given for the same
building, we can exactly specify the parameters of the cuboid model.
We provide the algorithm for placing buildings within a block in
the Appendix. The complete algorithm for placing blocks is a trivial
extension.

For each cuboidmodel, we apply the relevant input facade images
as textures. If four facades are not given, we tile the given facades
around all four sides of the cuboid. We make all parts of the image
that are not part of the facade transparent before texture application,
utilizing matting masks to determine where facade boundaries are.

4 EXPERIMENTS
In this section we motivate specific design decisions through quali-
tative and quantitative measures of performance for each subcom-
ponent in the larger 3D modeling pipeline. For all experiments, see
the Appendix for additional details on hyperparameter settings,
evaluation datasets, loss calculations, and more.

Table 1: Quantitative Segmentation Comparison

Precision Recall l1 l2

MaskRCNN 86.1 ± 10.3 78.2 ± 5.3 10.9 ± 8.1 8.2 ± 7.9
Matting 75.2 ± 13.1 86.5 ± 8.2 10.4 ± 8.5 7.6 ± 7.3

Figure 6: Qualitative analysis of matting improvements to
segmentation. From left to right, we show the input image
with the manually labeled ground truth, the MaskRCNN
output, the generated trimap, and the output of alpha mat-
ting. Best viewed with zoom.

4.1 Segmentation and Matting
For image segmentation, we utilize a MaskRCNN architecture.
MaskRCNN is one of the most popular image segmentation ar-
chitectures due to its ease of implementation and effectiveness in
applied settings. We train the MaskRCNN model to select facades
and occlusions (people, cars) in images3. However, we find that
MaskRCNN masks degrade close to segmentation boundaries. This
results in significant decrease of quality in later parts of the pipeline.

In order to produce tighter image boundaries, we examine image
matting algorithms. We convert the output MaskRCNN model to a
trimap, using the probabilities of the MaskRCNN to map the range
of 5% to 95% as uncertain. We then apply the image gradient-based
alpha matting algorithm from [16]. Using manually labeled ground
truth masks, we compare precision, recall, l1 loss, and l2 loss in
Table 1. We show qualitative results in Figure 6 and quantitative
results in Table 1.

We find that the masks produced by matting capture boundaries
better than the manually labeled ground truth around difficult edges
that manual labelling ignored. We also note that because we did not
explicitly capture every facade in every image, images where the
MaskRCNNmissed a facade or captured one that was not in ground
truth caused large variations in quantitative metrics. This explains
a significant amount of the error and variance in both precision
and recall.

3We note that it is easy to train for more classes of occlusions; for this proof of concept
work, we selected the two most common occlusion types.
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(a) LSD (b) Hough Transform (c) Nostalgin

Figure 7: Qualitative analysis of line-detection methods.
Best viewed with zoom.

Table 2: % Reduction of Vanishing Point Candidates

Search Space Wall Time

Deduplicate Collinear Segments 41.0 ± 16.1 33.1 ± 29.8
Deduplicate Infinite VPs 11.4 ± 19.1 10.1 ± 7.5
Combined 44.3 ± 18.7 35.6 ± 37.7

4.2 Rectification
4.2.1 Analysis of Line Detection Methods. Traditional approaches
for line detection such as Probabilistic Hough Transform or LSD
[23] are attractive because they require no hyperparameter tuning
and can be applied with little-to-no development cost using tools
such as OpenCV. However, we observe that these line detectors
yield poor rectifications, as occlusions such as people, tree, and cars
in addition to building ornamentation such as domes, arches, and
statues dilute the signal of the facade. Specifically, off-the-shelf line
detectors end up accommodating ‘curvy’ occlusions by segmenting
each contour into countless little lines at varying angles.

Our proposed method strengthens the signal of the facades and
removes line data coming from ornamentation and occlusions. See
Figure 7 for a qualitative comparison of the proposed methods
and traditional approaches. We note that ornamentation along the
roof and the occluding statue are less represented when using our
proposed method. This allows our pipeline to focus on lines that
actually provide depth information about the plane of the facade.

4.2.2 Vanishing Point Space Reduction. In our initial rectification
implementation, we noticed that the process of selecting, accumu-
lating, and voting on appropriate vanishing points was responsible
for over half of our run-time. We recognized that many of the van-
ishing points that were being analyzed were duplicates or near
duplicates. We took efforts to decrease the vanishing point analysis
space by reducing colinear line segments and infinite vanishing
point segments. We measure the percent reduction of the search
space and the wall time in Table 2.

4.3 Inpainting
4.3.1 Analysis of Inpainting Methods. We examine several tradi-
tional and deep learning approaches to inpainting. As far as we
are aware, there are no industry standard methods of quantifying
the quality of an inpainted image. In this work, we follow [26] and
use mean l1 and l2 loss as quantitative metrics. We note that these

Table 3: Inpainting Quantitative Comparison

Per Pixel l1 Loss Per Pixel l2 Loss

PatchMatch* 11.3 2.4
Global&Local* 21.6 7.1
ContextAttention* 17.2 4.7
PartialConv* 10.4 1.9
FreeForm* 9.1 1.6

Nostalgin 9.8 ± 4.2 2.5 ± 4.2
Nostalgin (Low Memory) 10.4 ± 4.1 2.8 ± 1.8

Loss values for starred methods taken from [26].

metrics have tenuous relation to the visual outcome of inpainting,
especially when the inpainter is purposely attempting to remove an
object or objects from a scene; thus, we rely heavily on qualitative
results.

Traditional approaches to inpainting are promising because they
require minimum or no training time and can handle large images
with relatively small increases in memory cost (though often with
a very large increase in computation time). Such approaches rely
on local similarity metrics that allow semi-accurate ‘copy paste’
operations. Diffusion based methods such as the Navier Stokes
method [4] propagate immediate neighboring pixel information
based on image gradient information; while patch based methods
such as PatchMatch [3] extend groups of local pixels based on low
level features. These methods are powerful, but scale poorly to
larger masks both in terms of quality and run-time.

In contrast, deep approaches to inpainting are promising because
they learn semantic features across an entire image. Further, the
run-time for deep approaches is often not a function of mask size.
Several deep approaches, such as Semantic Inpainting [24], are not
resolution independent. These models require train and inference
image sizes to be the same due to the presence of non-convolutional
layers in the model. Other deep approaches such as Inpainting with
Contextual Attention [27] are dependent on specific a mask shape
and location and do not generalize well to arbitrary masks.

The Free Formmethod proposed in [26] fulfills our requirements,
and we adapt it for this work. We discuss methods to improve the
scalability of this approach in 4.3.2; we decide to decrease model
capacity in exchange for better run-time. In Figure 8 and Table 3 we
respectively provide qualitative and quantitative analysis of several
of the mentioned methods.

4.3.2 Inpainter Scalability. Though the Free Form model has better
accuracy at higher resolutions than other tested methods, it is fairly
memory and compute intensive when trained on high-resolution
images (600x600) and used for inference on very high-resolution im-
ages (1200x1200). In this section we describe methods of decreasing
the memory and computational load.

Given an image size, the two hyperparameters that have the
biggest impact on computational cost are the base layer width (all
layers in the model are a multiple of this hyperparameter) and the
stride of the contextual attention layer. Both of these hyperparame-
ters relate to model capacity; reducing capacity likely impacts the
quality of the inpainting model. To examine this relationship, we
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(a) Original Image and Input Mask

(b) PatchMatch (c) Free Form

(d) Nostalgin (e) Nostalgin (Low Memory)

Figure 8: Qualitative analysis of inpainting methods. Best
viewed with zoom. Image courtesy of the New York Munici-
pal Archives.

separately vary these two hyperparameters and measure the quan-
titative loss scores and run-time metrics in Figure 9. As expected,
decreasing the base layer width results in less heap allocation and
less wall time usage, as there are less parameters in the model. In-
creasing the stride of the contextual attention layer has a similar
effect, although we note that the decrease in allocated memory
levels off. We expected l1 and l2 loss to increase as model capacity
decreases. Instead, we observe a slight trend in the opposite direc-
tion. We note that there are extremely high standard deviations,
making it difficult to draw meaningful conclusions from the loss
metrics. In accordance with our original hypothesis, we observe
significant visual degradation in qualitative tasks when using hyper-
parameter settings that result in decreased model capacity, despite
similar loss values. We believe this further suggests that l1 and
l2 loss have a low correlation to inpainting quality. Based on our
overall observations and our run-time measurements, we select a
base layer width of 20 and a contextual attention stride of two4.

Inpainting images larger than 1200x1200px is challenging even
with decreased model size. To solve this, we slice the image around
each separated mask component and inpaint each slice separately.
We then stitch the results back together. We call this approach
‘Low Memory’ Inpainting. We analyze the percent reduction in
memory and in run-time in Table 4. Here, ‘Nostalgin’ refers to
a Free Form inpainting model with the hyperparameter changes
discussed above. Note that we do not report the standard deviation
for heap allocation; to calculate heap allocation, we could only
easily measure the final heap across our evaluation set. We divide
that value by the number of evaluation images.
4Compared to baseline values of 26 and one respectively.

(a) Base Layer Width

(b) Contextual Attention Stride

Figure 9: Measurement of scalability and loss metrics over
changing hyperparameters.

Table 4: % Reduction in Inpainting Scalability Met-
rics

Wall Time Heap Alloc.

Nostalgin (Full Image) 54.7 ± 4.6 27.8
Nostalgin (Low Memory) 90.7 ± 3.1 79.6

All percentages compared to the FreeForm method [26].

4.4 Modeling
We examine the 3D modeling pipeline end to end by utilizing a set
of facade image data to reconstruct two blocks of Manhattan as it
looked in the 1940s. The image data for these two blocks are taken
from a tax record collection maintained by the New York Municipal
Archives. Figure 10 depicts an input image as it goes through the
2D processing components described above, and demonstrates how
clean facades can be extracted. Specifically, we are able to extract
two rectified and inpainted facades from a single black and white
image of a corner building.

We are able to run this pipeline at scale for many images in a
distributed fashion. We demonstrate this in Figure 11, which depicts
several angles of our generated city blocks (additional images in
the Appendix). We note that the generated environment is fully
walkable; the images presented in the figure are screenshots of a
larger simulation instead of one-off renderings. Thus, we are able
to easily generate viewing angles that are not present in the initial
images, showing the power of our approach. We also compare our
reconstruction to modern day images taken from Google Streetview.
We highlight that several buildings have changed significantly or
have completely been removed; as a result, our 3D reconstruction
is capable of capturing an experience that no longer exists.
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(a) Input. (b) Segment Facade, Occlusions.

(c) Mat Facade, Occlusions.

(d) Extract Lines.

(e) Final Results (Rectify, Inpaint).

Figure 10: End to end processing pipeline depicting 2D fa-
cade extraction, rectification, and inpainting. Input image
courtesy of New York City Municipal Archives.

5 CONCLUSION AND FUTUREWORK
Automatic city reconstruction from historical images is a difficult
task because historical images provide few guarantees about im-
age quality or content and often do not have important metadata
required to extract 3D geometry. In this work, we propose and moti-
vate Nostalgin, a scalable 3D city generator that is specifically built
for processing high-resolution historical image data. We describe a
four part pipeline composed of image parsing, rectification, inpaint-
ing, and modeling. For each component, we examine several design
choices and present quantitative and qualitative results. We show
that each subcomponent is built to uniquely handle the inherent

1940s Reconstruction Today

(a) 7th Ave, 17th St, NW Corner.

(b) 9th Ave, 17th St, SE Corner.

(c) 9th Ave, 18th St, SW Corner.

Figure 11: Qualitative analysis of inpainting methods. From
left to right, we show the original image data (courtesy of
the New York City Municipal Archives), our 3D reconstruc-
tion, and the modern day (taken from Google Streetview).
All images are from New York, NY.

difficulties that arise when dealing with historical image data, such
as sparsity of images and lack of metadata. We demonstrate the
end-to-end pipeline by reconstructing two Manhattan city blocks
from the 1940s.

We aim to leverage the power of Nostalgin to create an open
source platform where users can contribute their own photos and
generate immersive historical experiences that will allow them to
connect to prior eras of history. Additional data collected from
such a platform would help us further generalize Nostalgin, helping
us move towards full 3D reconstruction of all types of buildings.
We also are beginning to examine how we can extract geolocation
information from historical plot data, allowing us to move away
from any geotagging requirements.

We believe Nostalgin enables users to experience historical set-
tings in a way that was previously impossible. We are excited for
future developments in the historical 3D city modeling space.
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