
Traffic Control Elements Inference using Telemetry Data and
Convolutional Neural Networks

Deeksha Goyal
dgoyal@lyft.com

deeksha@stanford.edu
Lyft Inc. and Stanford University

San Francisco and Stanford, California

Albert Yuen
ayuen@lyft.com

Lyft Inc.
San Francisco, California

Han Suk Kim
hkim@lyft.com

Lyft Inc.
San Francisco, California

James Murphy
jmurphy@lyft.com

Lyft Inc.
San Francisco, California

ABSTRACT
Stop signs and traffic signals are ubiquitous in the modern urban
landscape to control traffic flows and improve road safety. Including
them in digital maps of the road network is essential for geospatial
services, e.g., assisted navigation, logistics, ride-sharing and au-
tonomous driving. This paper proposes to infer them by exclusively
relying on large-scale anonymized vehicle telemetry data, which
is available for companies offering such services. Vehicle patterns
from telemetry data at each intersection are extracted, and we em-
ploy a convolutional neural network for the task of labeling these
driver patterns. We train our neural network in San Francisco, and
choose to test the model in Palo Alto, whose urban layout is signifi-
cantly different from the urban layout of San Francisco, in order to
prove the generality of the algorithm. At a confidence threshold of
90%, our classifier achieves 96.6% accuracy and 66.0% coverage in
detecting three classes of traffic control elements: stop signs, traffic
signals, and neither. Our work paves a way for inferring traffic
control elements for automated map updates.

KEYWORDS
statistical learning, machine learning, deep learning, CNN, neural
networks, kernel density estimator, map making, map inference,
telemetry, OSM, stop signs, traffic lights, traffic, routing, ETA, loca-
tions, mapping, ride-sharing

ACM Reference Format:
Deeksha Goyal, Albert Yuen, Han Suk Kim, and James Murphy. 2019. Traffic
Control Elements Inference using Telemetry Data and Convolutional Neural
Networks. In Proceedings of (SIGKDD ’19).ACM,NewYork, NY, USA, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGKDD ’19, , Anchorage, Alaska, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Mapping is at the core of the daily operations of ride-sharing com-
panies such as Lyft, Uber, Didi Chuxing or Ola. Accurate digital
maps enable smooth pick-ups and drop-offs of passengers by pro-
viding, for example, precise building exits, suggested routes to assist
drivers, and optimal dispatch by accurately computing estimated
time arrival using roads conditions and traffic data.

Building and maintaining an accurate map is challenging in
many aspects. One can rely on a fleet of mapping cars to drive
around cities and collect road locations and street-level imagery.
This method provides a map of the highest quality, but is onerous
and expensive to scale because of the operational costs of the fleet
of mapping cars. Alternatively, one can rely on satellite or aerial
imagery to infer map features. Unfortunately, satellite and aerial
imagery can only provide the most basic map features — e.g., roads
— but not stacked roads or traffic control elements (TCEs) as aerial
images offer no visibility for street-level map features, and those are
often imprecise due to occlusion. Another approach is to leverage
large-scale proprietary telemetry data generated by ride-sharing
companies for each ride. Telemetry data does not suffer from the
cost of operating a fleet of mapping cars and their intrinsic low cov-
erage. It also has the potential to infer more types of map features
than satellite or aerial imagery.

In this paper, we rely on telemetry data from Lyft rides to infer
map features, with an emphasis on TCEs. More broadly, this paper
shows that we can infer an accurate map at a reduced cost for all
cities where large-scale telemetry data is available.

TCEs are signaling devices or signs that are located at road ends,
in the vicinity of a road junction or pedestrian crossing in order
to control the flows of traffic. Including TCEs in maps is valuable:
a) for accurate routing calculations in order to add a possible time
penalty to go from a road segment to the next one, b) for driver
position prediction to improve market decisions, c) safety, and d)
autonomous driving softwares to plan the behavior of vehicles on
the road.

The intuition behind this paper is that, given a large amount
of telemetry data, histograms of telemetry data with speed and
distance from road ends indicate the behavior of drivers at a road
end and can guide the inference of the TCEs at the end of each road
segment. The task is treated as a three-class classification problem,
with the classes being C = (traffic signal, stop sign, neither), and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGKDD ’19, , Anchorage, Alaska, USA Goyal and Yuen, et al.

Figure 1: (Left) Histogram of vehicle speed and distance
from the road end in North-West direction. The road ends
with a stop sign, located at around 175 feet. (Right) Scatter
plot of the vehicle data points used to build the histogram

Figure 2: (Left) Histogram of vehicle speed and distance
from the road end in South-West direction. The road ends
with a traffic signal, located at 80 feet. (Right) Scatter plot of
the vehicle data points used to build the histogram

Figure 3: (Left) Histogram of vehicle speed and distance
from the road end in South-West direction. The road ends
with neither a stop sign, nor a traffic signal. (Right) Scatter
plot of the vehicle data points used to build the histogram

we show in Fig. 1, 2 and 3, examples of such histograms for each of
the three classes. Fig. 1 represents the histogram for a road segment
ending with a stop sign, and we observe that the speed of the
drivers decreases as they approach the junction and then increases
afterwards, displaying a v shape in the histogram. Fig. 2 represents
the histogram for a road segment ending with a traffic signal, and

we see not only the similar v shape from the stop sign histogram,
but also a line of constant speed, which indicates drivers going
through on a green light. An example of a road end with neither is
shown in Fig. 3, and this idiosyncratic example reveals that many
drivers go through with constant speed. The neither class is an
interesting case because it encompasses many different types of
junction. For the most part, however, their driver patterns differ
noticeably from those of stop signs and traffic signals.

We propose to use a convolutional neural network, a neural
network architecture that is shift-invariant and specialized for pro-
cessing data with a grid-like structure — e.g., images or histograms
— to classify the three classes C. More ambitiously, by leveraging
large-scale telemetry data, we can use this approach to successfully
predict a larger variety of map features, e.g., number of lanes or
speed bumps.

This paper is organized as follows: We first provide an overview
of related work on telemetry and map inference. Geospatial applica-
tions of telemetry data range from traffic understanding down to the
level of computing precise locations of vehicles. Map inference is
the process of inferring map features — roads, buildings, traffic con-
trol elements — mainly from telemetry data and imagery. We then
describe the publicly available datasets as well as our anonymized
Lyft proprietary dataset employed in this paper. We present the
methodology of inferring TCEs from the problem formulation and
data processing to the chosen neural network architecture. We sub-
sequently apply our trained deep learning model to San Francisco
and Palo Alto, and describe the performance of our model as well
as its limitations. Last, we suggest what can be done next to extend
our present work.

2 RELATEDWORK
Telemetry data from smartphones has been used for more than
a decade to develop intelligent transportation systems: to under-
stand road usage and traffic [9, 16, 40], or to estimate arrival time
from a place to another [20, 21]. Combined with an accurate map
of the road network, the path of a vehicle on the road network
can be reconstructed using telemetry data, even in the case of
noisy and sparse data [29]. Crucial for the development of intelli-
gent transportation systems, this class of algorithms is called map-
matching [11, 19, 30]. While map-matching can be generalized for
cases when the map is wrong [28], map-matching algorithms — as
well as all arrival time estimation and routing algorithms — work
best when the map is correct. Here lies the value of map inference.

Most map inference work in the literature has been focused on
inferring and updating the road network [1, 5, 12, 26, 33] from
GPS traces — e.g., using kernel density estimators [3, 4], iterative
methods [15], clustering algorithms [8] or graph spanners [38].
With the availability of inexpensive satellite and aerial imagery
data, GPU computing power, as well as progress in convolutional
neural network (CNN) for computer vision [36, 37], CNN-powered
map inference has been used to infer road segments at varying
degrees of success [2, 6, 10, 17, 22, 27].

Inferring traffic control elements with telemetry data has been
explored in the past by using ruled-based methods [7, 39] in a set
of manually selected candidate locations, or by using more tra-
ditional statistical learning approaches, both supervised (random

Traffic Control Elements Inference using Telemetry Data and Convolutional Neural Networks SIGKDD ’19, , Anchorage, Alaska, USA

forest, Gaussian mixture models, SVM, naive Bayes) and unsuper-
vised (spectral clustering) [18]. However, the study relied on hired
drivers who probably know the purpose of the study (which may
unconsciously bias their driving behavior) and clever but extensive
feature engineering which may not be straightforward because of
noisy or sparse sensor data, e.g., the number of the times the vehicle
is stopped and the final stop duration.

This paper infers traffic control elements for map updates using
telemetry data and a CNN-based computer vision approach. This
differs from past map inference work as a) most of the past work
in map inference focused on inferring the road segments for map
updates, b) it relies too much on prior knowledge about the map
and driver behavior which means that it cannot be easily deployed
in all cities, and c) the work on telemetry data was based on more
traditional statistical methods.

While this present paper focuses only on the inference of traffic
control elements, the current approach can be generalized to many
types of map features.

3 DATASET
This paper relies on three data sources:
San Francisco Open Data - Our Ground Truth: Launched in
2009, the City of San Francisco opened hundreds of datasets per-
taining to the urbanism of San Francisco as well as its urban life.
Among the available datasets are the stop signs dataset [31] — 10,527
stop signs — and the traffic signal dataset [32] — 1,397 traffic signals,
each of which, in that dataset, can represent multiple traffic signals
depending on the direction of the road. While OSM also contains
traffic signals and stop signs, after benchmarking the coverage and
accuracy of the OSM traffic light and stop signs datasets, we de-
cided not to rely on the OSM traffic signal and stop signs datasets
because of its poor quality. The datasets from San Francisco Open
Data proved to be much more reliable, and are used as ground truth
to train our classifier.
The Road Network in Open Street Map (OSM) - What we
want to label: OSM is an open source map whose first contribu-
tions started in 2004 [13]. We mostly rely on the road network, de-
fined as a directed graph inwhich the vertices are road junctions and
the edges are roads. Our task is to label the end of each directed edge
with one of the three classes inC = (traffic signal, stop sign, neither).
We assume that the road network correctly models the road seg-
ments in our physical world, which is an appropriate assumption
as the road segments in the road network should first be well mod-
eled before inferring other elements in the road network (e.g., TCE,
speed limits, number of lanes, turn restrictions). In practice, an algo-
rithm to detect road segment errors is first run. Then, the algorithm
of the present paper is run.
Anonymized proprietary Lyft telemetry data:We leverage Lyft
vehicle telemetry data collected for forty days in the summer of
2018 in San Francisco and Palo Alto, collected from smartphones.
Each data point contains the latitude, longitude, accuracy, speed and
bearing. A future iteration of this work could make use of more
features like acceleration, gyroscope, and timestamp. Contrary to
Refs. [7, 18, 39], apart from building histograms, we do not engineer
any additional features. Collecting driver data over a short period of
time ensures that we are capturing only the TCEs that are currently

in the road network. We want, for example, avoid the situation
where we collect data for a long period of time (e.g., years), infer
that a given road segment possesses a TCE, but realize that the TCE
was actually removed during that period of time.

We create bounding boxes over the end of each road segment
in San Francisco. We assign vehicle data points to each bounding
box, from which we extract driver patterns. 20% of bounding boxes
we looked at are reserved for testing, 20% for validation, and the
remaining 60% are for training, all of which are selected randomly.
We ensured that the training set and the test set are drawn from
the same distribution.

4 METHODOLOGY
4.1 Problem Formulation
The TCE prediction task is a multi-label classification problem for
labeling traffic flows at junctions. The inputs are diagrams gener-
ated by applying a Kernel Density Estimator (KDE) on data points in
each bounding box (see Fig. 4), which display the frequency of data
points found at certain speeds and distances near junctions. Note
that, for example, a four-way junction would have four diagrams
for each traffic flow into the junction. The output is a prediction
for the traffic being controlled by one of the three classes in C: a
stop sign, a traffic signal, or neither.

We optimize for the mean cross-entropy loss function:

L =
1
N

N∑
i=1

H (Xi , yi) =
1
N

N∑
i=1

3∑
j=1

−yi, j log(ŷi, j), (1)

where N is the size of the dataset to compute the cross-entropy
loss function, H is the cross-entropy between the output of the
model applied to the sample Xi (the i-th diagrams) and the ground
truth yi , ŷi, j is the predicted probability output of the model for the
sample i and the label j. yi, j = 1 if j is the label for i , else yi, j = 0.

4.2 Training Data Generation
Our pipeline for generating predictions involves three data process-
ing steps.

4.2.1 Generate Bounding Boxes. In order to know where to collect
driver telemetry data from, we create bounding boxes over the end
of each road segment using the graph of the road network provided
by OSM [13]. Those bounding boxes are defined by the length, the
width, the position of the center as well as the bearing of the box.
We arbitrarily decided to use a length of 57 m and a width of 47 m,
and those values can be revisited in a future iteration of this work.
The bearing is given by OSM. These boxes also make sure to cover
10 m after the junction so that we can collect the vehicle data as
vehicles enter, cross, and leave the junctions. Figures 4 and 5 show
examples of the bounding boxes.

We filter out bounding boxes for junctions that have more than
four segments as those cases are rare (around 0.01% in San Fran-
cisco). We also filter out bounding boxes for junctions that are too
close to each other, so that we do not have any bounding boxes
cover more than one junction. Even after removing these cases,
we retain a coverage of junctions othat is over 90% with 33,532
bounding boxes as shown in Fig. 5.

SIGKDD ’19, , Anchorage, Alaska, USA Goyal and Yuen, et al.

We then label the bounding boxes using the San Francisco Open
Datasets [31, 32]. They are labeled by checking which traffic control
element in the dataset is closest to the junction in the bounding box.
If there are none, then we label the bounding box as not having
any traffic control elements (neither). We have manually bench-
marked this approach by randomly selecting 100 junctions from
the San Francisco Open Datasets and validated that the 100 selected
junctions are correct.

Figure 4: Examples of bounding boxes around Baker Street
and Hayes Street in San Francisco with the following labels:
Red = stop sign, Yellow = traffic signal, Blue = neither.

Figure 5: The bounding boxes in San Francisco with the la-
beling defined above.

4.2.2 Collect Telemetry Data. For each bounding box, we collect
driver telemetry data inside of them from 40 days in the summer
of 2018 for San Francisco. These days are deliberately chosen to be
different days of the week to ensure that we are not overfitting for
traffic patterns on certain days. We then place each of these data
points into the correct bounding boxes by aligning the bearing of
the telemetry data and the bearing of the bounding box. This pre-
vents collecting driver data in the opposite direction of traffic flow.
Note that some data points may be assigned to multiple bounding
boxes, since all bounding boxes at a junction cover the center part
of the junction.
It is likely that some data points would display low GPS accuracy
because of tall buildings in San Francisco as well as low smartphone
quality. Thus, we make sure to only collect data points with high
GPS accuracy.
In order to have enough data points to see clear driver patterns,
we only keep bounding boxes that have at least 1,000 data points.
This reduces the number of bounding boxes to 24,339. For future
iterations, rather than cutting out bounding boxes with fewer data
points, we could continue to collect telemetry in each bounding
box until we reach the lower bound.

4.2.3 Kernel Density Estimators. For each bounding box, we create
a diagram over speed and distance from junction by applying a 2D
Kernel Density Estimator (KDE) [35] on the data with a Gaussian
kernel function. The bandwidth of the KDE is determined by Sil-
verman’s rule of thumb [35].
At lower speeds, we are likely to see more location data points than
at higher speeds because of the sampling rate. This leads to a no-
ticeable amount of driver data points at speed zero at all distances
from the junction. These points are not indicative of any driver
pattern and add noise. In order to mitigate the effect of this noise,
we normalize the diagram with a cube root and min/max normal-
ization. These normalization steps moreover help with surfacing
the driver patterns we are searching for.

4.3 Training
We use a deep learning model in order to discern the driver pat-
terns from each diagram. We choose to train a convolutional neural
network as this class of neural networks is shift-invariant and spe-
cialized for processing data with a grid-like structure, and has been
particularly successful in solving computer vision problems [24, 25].

Preprocessing of Diagrams. Before we train, we resize the dia-
grams to dimensions 224 x 224 x 3. We further normalize the three
channels in the images using mean = [0.485, 0.456, 0.406] and std =
[0.229, 0.224, 0.225] in order to properly train the neural network.

VGG19. Our classifier uses the VGG19 architecture [37], devel-
oped in 2014, which improves upon AlexNet [24] by developing
a deeper architecture which leverages small filters. By doing so,
the model is able to have the same effective receptive field as a
shallower network with larger filters, but is able to have more non-
linearities and fewer parameters which increases its performance.
We tried using the ResNet architecture [14] and found that there
was a negligible difference in performance. This might be because
the input images simply contain one pattern per image, which is

Traffic Control Elements Inference using Telemetry Data and Convolutional Neural Networks SIGKDD ’19, , Anchorage, Alaska, USA

much simpler than images that are often fed into convolutional
neural networks, making a change in architecture unnecessary.

Transfer Learning. We tried a custom neural network architec-
ture initialized with randomweights. However, we found that when
we initialized our network with VGG19 pretrained on ImageNet,
there was a significant boost in accuracy. Despite our input images
being very different from the ImageNet images, transfer learning
has demonstrated the ability to detect underlying patterns effec-
tively [34].
We initialize with the weights from VGG19 pretrained on the Ima-
geNet dataset and do not freeze any layers. We add an additional
fully connected layer to the end of the network that has randomly
initialized weights and outputs three scores.

Parameters. We decrease the learning rate by gamma after 14
epochs. We also use the Adam adaptive learning update [23] with
β1 = 0.9, β2 = 0.999, and ϵ = 1e − 8. We use a batch size of 8.

5 EXPERIMENTAL RESULTS
5.1 Evaluation Metrics
Our approach is to first get a well-trained model based on accuracy
in San Francisco. We then test the model in Palo Alto to see its
generalizability. We evaluate this model by accuracy, precision,
recall, F1 score, and coverage of dataset.

5.2 Hyperparameter Tuning
For hyperparameter tuning, we use the aforementioned diagrams
and model architecture, and we tune the learning rate and gamma
decay rate values. We find that the best learning rate and gamma
values are 0.001 and 0.1 respectively.

5.3 Train on San Francisco
We trained our model using San Francisco data.

Accuracy. After hyperparameter tuning, our best model for the
three classes has a validation accuracy of 91.26%.

Figure 6: Training: Accuracy over Epoch

The validation and training accuracies in Fig. 6 tend to stay
around the same, suggesting that there is little overfitting.

Figure 7: Training: Cross-Entropy Loss over Epoch

Loss. The loss curves in Fig. 7 show a gradual decrease in loss.

Saliency Maps. Saliency maps [36] are a useful technique for
visualizing what pixels in the input image are most essential to
the classifier in making its prediction. In the saliency maps for this
model shown in Fig. 8, we see that the model is able to identify the
driver patterns we are searching for in each class. The stop sign
saliency maps show that the model is looking for the v pattern. The
traffic signal saliency maps show that the model is looking for a
normalized v pattern since they also tend to exhibit patterns for
constant speed. Finally, the neither case shows that the model is
learning multiple cases for neither junctions.

5.4 Test on Palo Alto
In order to evaluate how general the classifier is, we test the clas-
sifier in Palo Alto. Palo Alto is a good candidate because it is not
as urban as San Francisco, so one might expect a drop in perfor-
mance of the classifier. Moreover, in our dataset, San Francisco’s
traffic control elements comprise around 40% stop signs, 20% traffic
signals, and 40% neither. Palo Alto, on the other hand, is comprised
of around 15% stop signs, 8% traffic signals, and 77% neither. These
predictions are then compared against manual curation by human
experts.

Data Processing. We followed the same data processing pipeline
as before to create bounding boxes around each junction in Palo
Alto, collect millions of driver data points, and then assign the data
points to each bounding box. This created 3,641 bounding boxes
for Palo Alto, which are shown in Fig. 9.

Prediction. We apply the VGG19 classifier trained on the San
Francisco data on the Palo Alto data to output confidence scores in
each class for each image.

SIGKDD ’19, , Anchorage, Alaska, USA Goyal and Yuen, et al.

Figure 8: (Top) Examples of the input diagram for training for the three classes. (Bottom) Saliency maps for the three classes

Figure 9: The bounding boxes in Palo Alto. The orange la-
beling of the boxing boxes signifies that we do not currently
know their labels at prediction time.

Evaluation. A 10% quality control check on the human curated
ground truth showed 97% accuracy. Compared to the ground truth,
the San Francisco classifier applied to Palo Alto has a total accuracy
of 90.1%. Its precision, recall, and F1 scores are 0.90.
These results are promising because the model’s accuracy is similar
to that in San Francisco despite Palo Alto’s traffic patterns being
widely different.

Confidence Thresholding. We can further increase the total ac-
curacy and F1 score if we threshold by confidence as shown in
Table 1. The confidence threshold t only keeps data points that the

model assigns a confidence value greater or equal to t . By increas-
ing the confidence threshold, we are able to increase total accuracy.
However, this comes at the cost of decreasing the coverage of the
dataset.

If we choose a confidence threshold of t = 80%, for example, the
model achieves a total accuracy of 94.874% and it covers 82.10% of
the bounding boxes we provide.

Should we want to contribute our results to the open source
community, by thresholding, we can reduce the load on manual
curation to only samples that the model is very confident in.

Accuracies for each class. Table 1 shows that the classifier per-
forms best at predicting neither junctions. This could be because the
San Francisco dataset had a large proportion of neither junctions. In
fact, the model was able to predict all yield signs it encountered as
neither. We are confident that with more stop sign and traffic signal
training data, the classifier can perform better in those classes as
well.

5.5 Incorrect Predictions
We look at a random sample of diagrams and their predictions
and find that the incorrect predictions can be grouped into three
categories: label limitations, outliers, and lack of data.

5.5.1 Label Limitations. While the San Francisco open dataset
covers many traffic control elements, there are still some limitations
to using it. For example, it does not label implied stops, such as
when a minor street intersects with a major street. Our classifier
often predicts this as having a stop sign, since the driver at the
minor street exhibits stop-sign-like behavior. This can explain why
the stop sign accuracy is lowest, while it is an effectively correct
prediction.

5.5.2 Outliers. As shown in Fig. 10, some junctions have outliers
that skew the histograms and thus obscure the driver patterns. This
is resolved by filtering out extreme points.

Traffic Control Elements Inference using Telemetry Data and Convolutional Neural Networks SIGKDD ’19, , Anchorage, Alaska, USA

Palo Alto Metrics
Confidence
Threshold t

Coverage Total Accu-
racy

Stop Sign
Accuracy

Traffic
Signal
Accuracy

Neither ac-
curacy

Average
Precision

Average Re-
call

Average F1
Score

0% 100% 90.11% 74.63% 81.493% 96.86% 0.90 0.90 0.90
20% 100% 90.11% 74.63% 81.493% 96.86% 0.90 0.90 0.90
50% 98.38% 90.96% 75.63% 83.20% 97.38% 0.91 0.91 0.91
80% 82.10% 94.87% 82.46% 88.42% 98.66% 0.95 0.95 0.95
85% 77.19% 95.58% 85.26% 89.03% 98.97% 0.96 0.96 0.96
90% 66.06% 96.61% 89.29% 89.13% 99.18% 0.97 0.97 0.97
95% 46.19% 97.26% 92.02% 88.69% 99.27% 0.97 0.98 0.97
99% 12.63% 98.83% 91.30% 91.67% 100% 0.99 0.99 0.99

Table 1: Palo Alto Confidence Thresholding

Figure 10: A few data points at high speeds are causing skew

5.5.3 Insufficient Number of Data Points. Some histograms do not
show a clear pattern and these tend to have fewer data points. We
can resolve this by raising the lower bound on number of data
points per bounding box. This can also be corrected by the first
improvement that we propose in the next section in order to reduce
the noise level, and therefore the need to collect a larger amount of
data point/

6 FUTUREWORK AND CONCLUSION
So far, accurate and thorough data on traffic control elements has
been incorporated into digital maps by using street-level obser-
vations, usually from human beings or cameras. We prove in this
paper that large-scale telemetry data can be used in conjunction
with deep learning to infer traffic control elements for automated

map updates, as demonstrated by the high accuracy and F1 score
in a region different from the region where the model was trained.

This is a promising step forward into wide-scale traffic control
element detection. However, we believe that further improvements
can be made.

First and foremost, themost direct improvement of this work is to
use map-matched drivers locations. A map-matching algorithm [28,
30] takes as input the map of the road network and a sequence of
possibly sparse and noisy locations, and outputs a trajectory on the
road network. By map-matching each ride of the drivers, we can
attribute a location in the road network for each driver location
(mostly collected from the GPS unit of the drivers’ smartphones).
That would solve two problems: 1) Our diagram-based approach
will then successfully work in places with overlapping roads, short
roads and urban canyon, where the GPS location is notoriously less
accurate, as we will directly collect map-matched locations data on
a given road segment, and not noisy GPs locations using bounding
boxes. All kind of road segments will therefore be captured. 2)
Because the data collection is no longer done in a bounding box
for each road segment, but directly on each road segment, the size
and shape of bounding boxes being arbitrary will no longer be
an issue. We would also no longer encounter the possible issue of
overlapping bounding boxes. We would also be able to apply our
current algorithm in cities with a large amount of curved roads
(e.g., Paris).

Another important improvement of our model would be to add
more sensory input to the model, such as acceleration. Road type
and neighborhood type should also be added as inputs to the model,
as they are often correlated with the type of traffic control elements.

This paper only explores three classes, but there are other types
of traffic control elements — for example, yield signs — that we
are interested in. We found that the model correctly interpreted
all yield signs as neither in Palo Alto. In future work, we may add
yield as another class.

Taking into account the hour of the day is another important
improvement as some traffic control elements change their behavior
at certain hours. For example, some traffic signals blink red in the
middle of the night instead of following the green-yellow-red cycle.
This suggests a stop sign behavior at those hours.

We may also fuse this approach with street imagery data to
improve the confidence of our predictions.

SIGKDD ’19, , Anchorage, Alaska, USA Goyal and Yuen, et al.

The bounding boxes were generated after filtering out junctions
with more than 4 segments and junctions that are too close to each
other. In order to build a more inclusive model, creating bounding
boxes of adaptive sizes that change their geometry based on each
road segment’s geometry is another potential improvement. This
way, we can cover all roads and junctions.

In summary, large-scale telemetry vehicle data, collected by large
logistics, routing and ride-hailing companies, combined with deep
learning, can be used to detect various types of traffic control ele-
ments. This paper paves the way for robust updates of digital maps
at scale.

ACKNOWLEDGMENTS
The authors are grateful for the fruitful interactions with their
Mapping coworkers at Lyft, especially Barak Michener, Yuanyuan
Pao, Timothy Brathwaite, Marie Douriez and RenÃľe Park. We
also thank the Lyft Data Curation Team lead by Alex Kazakova for
helping us assess the accuracy of our algorithm. We also thank the
City of San Francisco for releasing and updating their traffic control
element datasets, and the OSM community for the formidable digital
map that Open Street Map has become over the years.

REFERENCES
[1] Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakr-

ishnan, Sanjay Chawla, and Sam Madden. 2018. Machine-assisted Map Editing.
In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (SIGSPATIAL ’18). ACM, New York, NY, USA,
23–32. https://doi.org/10.1145/3274895.3274927

[2] Favyen Bastani, Songtao He, Mohammad Alizadeh, Hari Balakrishnan, Samuel
Madden, Sanjay Chawla, Sofiane Abbar, and David DeWitt. 2018. RoadTracer:
Automatic Extraction of Road Networks from Aerial Images. In Computer Vision
and Pattern Recognition (CVPR). Salt Lake City, UT.

[3] James Biagioni and Jakob Eriksson. 2012. Inferring Road Maps from Global
Positioning System Traces: Survey and Comparative Evaluation. Transportation
Research Record 2291, 1 (2012), 61–71. https://doi.org/10.3141/2291-08

[4] James Biagioni and Jakob Eriksson. 2012. Map Inference in the Face of Noise
and Disparity. In Proceedings of the 20th International Conference on Advances
in Geographic Information Systems (SIGSPATIAL ’12). ACM, New York, NY, USA,
79–88. https://doi.org/10.1145/2424321.2424333

[5] R. Bruntrup, S. Edelkamp, S. Jabbar, and B. Scholz. 2005. Incremental map
generation with GPS traces. In Proceedings. 2005 IEEE Intelligent Transportation
Systems, 2005. 574–579. https://doi.org/10.1109/ITSC.2005.1520084

[6] Alexander V. Buslaev, Selim S. Seferbekov, Vladimir I. Iglovikov, and Alexey A.
Shvets. 2018. Fully Convolutional Network for Automatic Road Extraction From
Satellite Imagery. In CVPR Workshops.

[7] R. Carisi, E. Giordano, G. Pau, and M. Gerla. 2011. Enhancing in vehicle digital
maps via GPS crowdsourcing. In 2011 Eighth International Conference on Wireless
On-Demand Network Systems and Services. 27–34. https://doi.org/10.1109/WONS.
2011.5720196

[8] Chen Chen, Cewu Lu, Qixing Huang, Qiang Yang, Dimitrios Gunopulos, and
Leonidas Guibas. 2016. City-Scale Map Creation and Updating Using GPS Col-
lections. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
1465–1474. https://doi.org/10.1145/2939672.2939833

[9] Cynthia Chen, Jingtao Ma, Yusak Susilo, Yu Liu, and Menglin Wang. 2016. The
promises of big data and small data for travel behavior (aka human mobility)
analysis. Transportation research part C: emerging technologies 68 (2016), 285–299.

[10] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan. 2017. Automatic Road
Detection and Centerline Extraction via Cascaded End-to-End Convolutional
Neural Network. IEEE Transactions on Geoscience and Remote Sensing 55, 6 (June
2017), 3322–3337. https://doi.org/10.1109/TGRS.2017.2669341

[11] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet. 2012. Online
map-matching based on Hidden Markov model for real-time traffic sensing appli-
cations. In 2012 15th International IEEE Conference on Intelligent Transportation
Systems. 776–781. https://doi.org/10.1109/ITSC.2012.6338627

[12] T. Guo, K. Iwamura, and M. Koga. 2007. Towards high accuracy road maps
generation from massive GPS Traces data. In 2007 IEEE International Geoscience
and Remote Sensing Symposium. 667–670. https://doi.org/10.1109/IGARSS.2007.
4422884

[13] M. Haklay and P. Weber. 2008. OpenStreetMap: User-Generated Street Maps.
Pervasive Computing 7, 4 (Oct. 2008), 12–18. https://doi.org/10.1109/MPRV.2008.
80

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[15] Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari Bal-
akrishnan, Sanjay Chawla, and Sam Madden. 2018. RoadRunner: Improving
the Precision of Road Network Inference from GPS Trajectories. In Proceed-
ings of the 26th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL ’18). ACM, New York, NY, USA, 3–12.
https://doi.org/10.1145/3274895.3274974

[16] Juan C. Herrera, Daniel B. Work, Ryan Herring, Xuegang (Jeff) Ban, Quinn
Jacobson, and Alexandre M. Bayen. 2010. Evaluation of traffic data obtained via
GPS-enabledmobile phones: TheMobile Century field experiment. Transportation
Research Part C: Emerging Technologies 18, 4 (2010), 568 – 583. https://doi.org/10.
1016/j.trc.2009.10.006

[17] Jiuxiang Hu, Anshuman Razdan, John C. Femiani, Ming Cui, and Peter Wonka.
2007. Road network extraction and intersection detection from aerial images by
tracking road footprints. IEEE Transactions on Geoscience and Remote Sensing 45,
12 (12 2007), 4144–4157. https://doi.org/10.1109/TGRS.2007.906107

[18] Shaohan Hu, Lu Su, Hengchang Liu, Hongyan Wang, and Tarek F. Abdelzaher.
2015. SmartRoad: Smartphone-Based Crowd Sensing for Traffic Regulator De-
tection and Identification. ACM Trans. Sen. Netw. 11, 4, Article 55 (July 2015),
27 pages. https://doi.org/10.1145/2770876

[19] Timothy Hunter, Pieter Abbeel, and Alexandre Bayen. 2014. The Path Inference
Filter: Model-Based Low-Latency Map Matching of Probe Vehicle Data. IEEE
Transactions on Intelligent Transportation Systems 15, 2 (April 2014), 507–529.
https://doi.org/10.1109/TITS.2013.2282352

[20] Timothy Hunter, Ryan Herring, Pieter Abbeel, and Alexandre Bayen. 2009. Path
and travel time inference from GPS probe vehicle data. NIPS Analyzing Networks
and Learning with Graphs 12, 1 (2009).

[21] Timothy Hunter, Aude Hofleitner, Jack Reilly, Walid Krichene, Jerome Thai,
Anastasios Kouvelas, Pieter Abbeel, and Alexandre Bayen. 2013. Arriving on time:
estimating travel time distributions on large-scale road networks. arXiv e-prints,
Article arXiv:1302.6617 (Feb. 2013), arXiv:1302.6617 pages. arXiv:cs.LG/1302.6617

[22] Vladimir Iglovikov, SergeyMushinskiy, and Vladimir Osin. 2017. Satellite Imagery
Feature Detection using Deep Convolutional Neural Network: A Kaggle Competi-
tion. arXiv e-prints, Article arXiv:1706.06169 (June 2017), arXiv:1706.06169 pages.
arXiv:cs.CV/1706.06169

[23] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. International Conference on Learning Representations (ICLR) (2015).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012.
ImageNet Classification with Deep Convolutional Neural Net-
works. (2012), 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[25] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. 2015. Deep Learning.
Nature 521 (2015), 436–444.

[26] Xuemei Liu, James Biagioni, Jakob Eriksson, Yin Wang, George Forman, and
Yanmin Zhu. 2012. Mining Large-scale, Sparse GPS Traces for Map Inference:
Comparison of Approaches. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’12). ACM, New York,
NY, USA, 669–677. https://doi.org/10.1145/2339530.2339637

[27] Gellert Mattyus, Wenjie Luo, and Raquel Urtasun. 2017. DeepRoadMapper: Ex-
tracting Road Topology From Aerial Images. In The IEEE International Conference
on Computer Vision (ICCV).

[28] James Murphy and Yuanyuan Pao. 2018. Map matching when the map is wrong:
Efficient vehicle tracking on- and off-road for map learning. arXiv e-prints, Article
arXiv:1809.09755 (Sept. 2018), arXiv:1809.09755 pages. arXiv:math.OC/1809.09755

[29] James Murphy, Yuanyuan Pao, and Asif Haque. 2017. Image-based Classification
of GPS Noise Level Using Convolutional Neural Networks for Accurate Distance
Estimation. In Proceedings of the 1st Workshop on Artificial Intelligence and Deep
Learning for Geographic Knowledge Discovery (GeoAI ’17). ACM, New York, NY,
USA, 10–13. https://doi.org/10.1145/3149808.3149811

[30] Paul Newson and John Krumm. 2009. Hidden Markov Map Matching Through
Noise and Sparseness. In Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (GIS ’09). ACM, New
York, NY, USA, 336–343. https://doi.org/10.1145/1653771.1653818

[31] SF OpenData. 2018. Stop Signs. https://data.sfgov.org/Transportation/
Stop-Signs/ddtz-jevd/data

[32] SF OpenData. 2018. Traffic Signals. https://data.sfgov.org/Transportation/
Traffic-Signals/4abk-vggy

[33] Zhangqing Shan, Hao Wu, Weiwei Sun, and Baihua Zheng. 2015. COBWEB:
A Robust Map Update System Using GPS Trajectories. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’15). ACM, New York, NY, USA, 927–937. https://doi.org/10.1145/
2750858.2804286

https://doi.org/10.1145/3274895.3274927
https://doi.org/10.3141/2291-08
https://doi.org/10.1145/2424321.2424333
https://doi.org/10.1109/ITSC.2005.1520084
https://doi.org/10.1109/WONS.2011.5720196
https://doi.org/10.1109/WONS.2011.5720196
https://doi.org/10.1145/2939672.2939833
https://doi.org/10.1109/TGRS.2017.2669341
https://doi.org/10.1109/ITSC.2012.6338627
https://doi.org/10.1109/IGARSS.2007.4422884
https://doi.org/10.1109/IGARSS.2007.4422884
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1145/3274895.3274974
https://doi.org/10.1016/j.trc.2009.10.006
https://doi.org/10.1016/j.trc.2009.10.006
https://doi.org/10.1109/TGRS.2007.906107
https://doi.org/10.1145/2770876
https://doi.org/10.1109/TITS.2013.2282352
http://arxiv.org/abs/cs.LG/1302.6617
http://arxiv.org/abs/cs.CV/1706.06169
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1145/2339530.2339637
http://arxiv.org/abs/math.OC/1809.09755
https://doi.org/10.1145/3149808.3149811
https://doi.org/10.1145/1653771.1653818
https://data.sfgov.org/Transportation/Stop-Signs/ddtz-jevd/data
https://data.sfgov.org/Transportation/Stop-Signs/ddtz-jevd/data
https://data.sfgov.org/Transportation/Traffic-Signals/4abk-vggy
https://data.sfgov.org/Transportation/Traffic-Signals/4abk-vggy
https://doi.org/10.1145/2750858.2804286
https://doi.org/10.1145/2750858.2804286

Traffic Control Elements Inference using Telemetry Data and Convolutional Neural Networks SIGKDD ’19, , Anchorage, Alaska, USA

[34] Hoo-Chang Shin, Holger Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,
Jianhua Yao, Daniel J. Mollura, and RonaldM. Summers. 2016. Deep Convolutional
Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset
Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging 35
(2016), 1285–1298.

[35] B. W. Silverman. 1986. Density Estimation for Statistics and Data Analysis. Chap-
man & Hall, London.

[36] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency
Maps. CoRR abs/1312.6034 (2013). arXiv:1312.6034 http://arxiv.org/abs/1312.6034

[37] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

arXiv:1409.1556 http://arxiv.org/abs/1409.1556
[38] Rade Stanojevic, Sofiane Abbar, Saravanan Thirumuruganathan, Sanjay Chawla,

Fethi Filali, and Ahid Aleimat. 2017. Kharita: Robust Map Inference using Graph
Spanners. CoRR abs/1702.06025 (2017). arXiv:1702.06025 http://arxiv.org/abs/
1702.06025

[39] D. Wang, T. Abdelzaher, L. Kaplan, R. Ganti, S. Hu, and H. Liu. 2014. Exploitation
of Physical Constraints for Reliable Social Sensing. In 2013 IEEE 34th Real-Time
Systems Symposium(RTSS), Vol. 00. 212–223. https://doi.org/10.1109/RTSS.2013.
29

[40] Pu Wang, Timothy Hunter, Alexandre M. Bayen, Katja Schechtner, and Marta C.
González. 2012. Understanding Road Usage Patterns in Urban Areas. Scientific
Reports 2 (20 12 2012), 1001 EP –. https://doi.org/10.1038/srep01001

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1702.06025
http://arxiv.org/abs/1702.06025
http://arxiv.org/abs/1702.06025
https://doi.org/10.1109/RTSS.2013.29
https://doi.org/10.1109/RTSS.2013.29
https://doi.org/10.1038/srep01001

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Methodology
	4.1 Problem Formulation
	4.2 Training Data Generation
	4.3 Training

	5 Experimental Results
	5.1 Evaluation Metrics
	5.2 Hyperparameter Tuning
	5.3 Train on San Francisco
	5.4 Test on Palo Alto
	5.5 Incorrect Predictions

	6 Future Work and Conclusion
	Acknowledgments
	References

