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ABSTRACT
The impact of city-planning on mobility habits of urban dwellers
has been proven crucial to well functioning cities. Nevertheless, the
correlation between discrete urban interventions and metropolitan
scale mobility mode-choices (MC) is challenging to predict and
communicate. This paper presents the design and deployment of
’MoCho’, a real-time MC modelling, prediction and collaboration
platform. MoCho aims to predict and simulate MC of individuals in
a metro region in response to real-time urban design iterations. The
prediction models consider individual characteristics and attributes
of available alternatives and are calibrated using survey data. To
explore MoCho MC predictions, users interact with CityScope, a
compu-tangible user-interface which triggers new MC predictions
and their impacts based on interactive design of land-use, density or
spatial proximity. Finally, a distributed computational system deliv-
ers real-time predictions onto a web-based user-interface. In 2018,
a MoCho instance has been developed and deployed to simulate
MC for the Boston metro area, focusing on a 14 acres development
site in Kendall Sq. Cambridge, MA. The choice model was well
fitted and the parameters showed significant associations with a
range of explanatory variables including travel times, residential
and employment densities and personal attributes like age, gen-
der, education-level and home-ownership. Such a combination of
an intuitive TUI and well-calibrated prediction models can allow
experts and non-experts alike to participate in an evidence-based
urban design process. Code for MoCho MC model and front-end is
available here: https://github.com/CityScope/CS_choiceModels
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1 INTRODUCTION
The individual choices urban dwellers make about their mobility
and transportation behavior have profound impacts on their own
lives, as well as society as a whole. Motorized transportation leads
to negative external impacts such as carbon emissions and air pollu-
tion, whereas active mode choices (MC) such as walking and cycling
improve the physical and mental health of travelers [8, 22]. Urban
planning can influence these mobility choices and their societal
impacts by organizing spatial land-uses and infrastructure in such
a way as to encourage short trips using active modes [14, 27].

Statistical learning methods have been used successfully both in
research and in practice to predict the mode choices of travellers in
response to urban interventions such as changes in land use or road
infrastructure [5, 7, 12, 32]. Additionally, emission and epidemio-
logical models may be used to predict the health and environmental
impacts of changes in transportation behavior [19]. Recently, some
researchers have developed end-to-end models which can directly
predict the health and environmental impacts resulting from infras-
tructure or policy changes [21, 28] and models which can optimise
network infrastructure for these impacts [9].

Making predictions through statistical models generally involves
the use of either statistical computing platforms like R [15] or Stata
[10] or specialised transportation modelling software such as Sim-
Mobility [1] or Python and GIS plugins. Such platforms may carry
steep learning curves, require specialised skills and feature limited
capabilities for real-time interaction [25]. This challenges both ex-
perts and non-experts to evaluate a manifold of ’what-if’ scenarios
or to rapidly iterate on designs alternatives. In recent years, Tangi-
ble User Interfaces (TUI) have been developed to facilitate a more
collaborative process of urban design, augmented by computation
and data analytics. Examples of such TUIs are the Augmented Ur-
ban Planning Workbench [17] and The Clay Table [18] which were
designed to facilitate a collaborative urban design process. Since
2013, the City Science group at the MIT Media Lab has been devel-
oping CityScope, a collaborative urban platform which combines a
TUI with real-time predictive analytics and visualisation of urban
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dynamics. Previous CityScope instances have included capabili-
ties for modelling energy performance, accessibility of housing,
employment and amenities among other metrics [2, 23].

This paper describes the development of MoCho, a CityScope
instance which aims to allow decision-makers, planners and com-
munity members alike to experiment with different land-uses and
spatial organisations in a city district and to understand in real-
time how those designs would influence mobility behavior, MC
and other societal impacts. An application of this tool to the ’Volpe’
development project in Kendall Sq., Cambridge, MA is also reported.

2 DATA AND MODELLING
MoCho makes use of publicly available datasets and APIs which
cover all major urban settlements in the USA. This ensures that the
methodology presented here can be replicated for the vast majority
of American cities. The main resources used are listed in Table 1.
These data sources are used to generate a synthetic population of
people and to calibrate models which could predict their mobil-
ity behaviors in response to changes such as new residential or
commercial development. The modelling can be described in four
steps: (1) population synthesis, (2) home and job location choices,
(3) transportation mode choice and (4) impact assessment. Each of
these steps are outlined below.

2.1 Population Synthesis
Mobility behaviors may be analyzed using two main approaches:
(1) an aggregate approach which divides the area into zones and
predicts aggregates inter-zonal flows, or (2) using a disaggregate
approach which recognizes that urban mobility patterns are the
result of many decisions made by individuals. The disaggregate
approaches directly explain why an individual makes a choice given
their circumstances, and therefore they are better able to predict
how those choices may change in different circumstances [20]. Due
to privacy and data availability constraints, it is generally not prac-
tical to make predictions with respect to real population. Instead, it
is common practice to use population synthesis techniques in order
to produce a "synthetic population" and to make predictions with re-
spect to these individuals. The methods take individual/household-
level demographic profiles and zonal aggregate demographic data
and allocate the individual records to zones in order to create the
synthetic population. Some common techniques include Iterative
Proportional Fitting, [4, 11], convex optimisation [31] and Bayesian
methods [29]. The PUMS survey data used in MoCho include the
home Public Use Microdata Area (PUMA) and place-of-work PUMA
for each respondent where each PUMA corresponds to a set of cen-
sus tracts. In order to model commuting trips at a tract-to-tract
level, the population synthesis process needs to allocate each in-
dividual to a home and work census tract pair. A simple Bayesian
method is utilized for this purpose, using the origin-destination
flows from the CTPP data as well as aggregate demographic data
from the ACS. PUMS individuals with attributes A, home PUMA H
and work PUMA POW are assigned to an origin-destination (O-D)

pairwi j according to the probability calculated with equation 1.

P(wi j |A) ∝ δi j
∏
a∈A

P(a |wi j )P(wi j )

where

δi j =

{
1, if H ⊂ i and POW ⊂ j

0, otherwise

(1)

The prior probabilities P(a |wi j ) and P(wi j ) may be obtained from
the ACS aggregate demographic data and the CTPP O-D data.

2.2 Home and Employment Location Choices
The model needed to be able to simulate the changes in home and
work locations of the population in response to edits made on the
CityScope (CS) platform in respect to land-use, density and spatial
organisation. It was assumed that when a residential or employment
unit appears in a census tract, new residents/workers appear. The
number of new people is determined by the density of the unit and
some demographic attributes (such as income or job sector) may be
determined by the unit type. It is assumed that the conditional prob-
ability distribution of the new residents’ demographic attributes
and work locations is similar to that of the existing residents of
that same tract, conditional on the known attributes. Therefore,
the new resident can be simulated by cloning a randomly sampled
person with the same home location tract and attributes from the
baseline synthetic population. A similar process is used to assign
home locations to new workers. This simple location choice can
be expected be accurate for small changes to the land-uses and
densities in a district but for more substantial changes, a more so-
phisticated model may be required. In future iterations of MoCho,
location choices will be predicted using a discrete choice model,
similar to the mode choice model described in the next section.

2.3 Mode Choices
The choice of transportation mode for each synthetic individual’s
commute needs to be predicted in response to each simulated
intervention. The MC are modelled using a logit-based discrete
choice model. This class of models has been used extensively by
researchers and practitioners in modelling of decisions including
home location, work location and mode of transportation. An ad-
vantage of discrete choice models over many other classification
models is that their estimated parameters have economic inter-
pretations. This means that the final model results can be easily
understood by practitioners. Discrete choice models assume that in-
dividual decision makers select the alternative from their available
options which maximises their utility. The utility is composed of a
systematic component and a stochastic component. The systematic
portion of the utility is an additive function of attributes of the
decision maker, attributes of the alternative and interactions be-
tween both. This stochastic component is needed because in reality,
two people with the same measured attributes may take different
decisions when faced with similar alternatives. This component is
typically assumed to be Gumbel distributed due to computational
advantages and this leads to the logit formulation. These models
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Resource Description
Public Use Microdata Sample (PUMS) Individual person and household level survey data for the USA
American Community Survey (ACS) Aggregated demographic data for administrative zones in the USA
OpenStreetMap (OSM) An open-source editable map of the world [13]
Open Source Routing Machine (OSRM) An API which provides routing information using OSM data [16]
Open Trip Planner (OTP) A server which computes multi-modal transport itineraries [30]
Census Transportation Planning Products (CTPP) A special tabulation of the ACS data for commuting characteristics

Table 1: Data resources used for US cities in the MoCho framework

can be defined by the following three expressions [20].

U (Xi , St ) ≥ U (X j , St )∀j ∈ C

Uit = Vit + ϵit

Vit = V (St ) +V (Xi ) +V (St ,Xi )

(2)

where C is the choice set, i is the alternative chosen by decision
maker t , Uit is the true utility of alternative i to decision maker t ,
Xi are the attributes of option i , St are the attributes of person t, V
is the systematic utility and ϵ is the stochastic utility.

The parameters of the logit modelmust be calibratedwith individual-
level stated-choice or revealed-choice data. For MoCho, individual
observations from the PUMS data could be used for the calibra-
tion. The PUMS survey data contains 12 different options for MC
but for the purpose of this work, this list is simplified to 4 major
classes: car, bicycle, walk and public transportation modes. The
explanatory variables considered for inclusion in the model include
person attributes from the PUMS data (such as: age, income, gender,
education level and employment type), attributes of the home and
workplace census tracts from the ACS data, and the estimated travel
times and costs for each mode and each trip. The travel times for
each census tract pair were estimated by querying the OSRM API
(for walking, cycling and driving times) and Open Trip Planner (for
public transit travel times). The PUMS data and ACS data contain
hundreds of variables and so some exploratory analysis and feature
engineering needs to be done to create a list of candidate features
prior to model fitting. Once the features have been selected, the co-
efficients of each features can be estimated by maximum likelihood
estimation, in this case using the python library ’pylogit’.

2.4 Impact Assessment
The framework currently includes impact calculations for carbon
emissions and the effects of physical activity on mortality rates.
The carbon emission calculations are based on simple per-km esti-
mates for each mode. More accurate estimates could be obtained
by using data specific to the vehicle fleet of the study region and
detailed modelling of emissions rates. However, in order to make
the methodology easily replicable, the aggregated method is pre-
ferred. The physical activity impacts are based on the approach of
theWorld Health Organisation’s Health Economic Assessment Tool
(HEAT). This method calculates the expected change in mortality
due to a given amount of walking and/or cycling in a population
using Relative Risk estimates from meta-analysis of multiple epi-
demiological studies. All impact estimates are normalised by the
normal of people in the study region so that changes in population

do not not bias the results.
RR = RRre f × (V /Vr ef )

∆D = N × (1 − RR) ×MRbase
(3)

where RR is the predicted Relative Risk of mortality in the popu-
lation due to the walking or cycling, RRre f is the Relative Risk of
mortality due to walking/walking in the reference study, V is the
volume of walking or cycling undertaken, Vr ef is the volume of
walking or cycling undertaken in the reference study, ∆D is the
expected number of avoided deaths, N is the population size and
MRbase is the baseline mortality rate in the population.

3 SYSTEM ARCHITECTURE
This section describes the systemwhich allows themodels described
in section 2 to support raid experimentation in real-life design pro-
cesses. The system design, software and hardware, user-interface,
interaction and experience are described below. The hardware of
the MoCho system consists of an MIT CityScope instance, a TUI
dedicated to rapid urban prototyping and real-time feedback. The
software architecture of MoCho, illustrated in Figure 1 consists of
four parts: (1) Human Computer Interaction (HCI) front-end as well
as three services each handling (2) Tangible User Interface (TUI)
data management, (3) computation of MC model and (4) a spatial
Geo-Server. The rest of the section describes each of the system’s
different components, the data-flow and networking between each
part.

3.1 MIT CityScope
Since 2013, MIT City Science Group researchers are developing
CityScope (CS): a human-centered, urban modeling, simulation
and decision-making platform. CS sits in the intersection of urban-
planning, Human-Computer Interaction and social sciences with
a goal to support an evidence-based discourse around the nature
of the built environments. Through a series of lab experiments
and real-world deployments, CS has been successful in providing
insights, predictions and consensus in various real-world urban
questions [3, 23, 24]. For the purpose of MoCho, a CS instance was
redesigned and constructed in an active demo area situated at the
MIT Media Lab in Cambridge, MA.

3.2 CS User Interaction
A common CS instance features a few key components: A tangible
scaled urban model (city, neighborhood or at street scale), a compu-
tational acquisition unit and a feedback module. The scaled urban
model of a CS instance is usually built over a translucent table-top
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Figure 1: software architecture
The CS table data is sent to CityIO from the tangible interface

made with LEGO. CityIO stores that data to have it available to the
MoCho computation module. MoCho combines this data with
other geo-data from the Geo server and performs computation.
The Front-end visualizes the table state and mode choices. Each

arrow indicates a HTTP response.

and includes a set of pre-tagged LEGO bricks acting as intractable
building-blocks or massing elements. These allow users to rapidly
modify land-use (ranging from roads, parks, amenities, residential,
office buildings or other), density and other urban properties by
manipulating the tiles. The computational acquisition unit has sen-
sors and cameras for real-time scanning of the scene. Each user
interaction is detected and recorded via a computer-vision scan-
ning system and is then transmitted to cityIO, a distributed cloud
service. In this case, an openCV-based Python tool was designed to
recognize the tile-tags and sliders interaction. CityIO role is to act
as a mediator between the different computational modules and
aggregate their results for displaying on the CS instance. Lastly,
a feedback module contains display screens, projectors and other
representation tools to communicate the analysis outcomes.

3.3 cityIO API
CityIO is a cloud service holding the CS TUI interaction data and
is responsible for distributing these interactions to local or remote
urban-analysis modules. In the case of this project, the MoCho
service (described in section 3.4) listens to CityIO to attain the CS
table state, and combines this with data from the Geo Server tomake
predictions. As with most web based systems, the communication
between the components was HTTP based.

The flow of data within this system has four steps: First, the CS
interface reads the tags and sends it to CityIO. Next, CityIO receives
the CS data and exposes it as a HTTP API making it available to
MoCho and other modules. Then, in combination with the data
in the Geo-Server, MoCho predicts and exposes the result by it’s
own HTTP endpoint. Finally, the front-end collects data from the
different APIs and visualizes the overall result on the CS instance.
Additionally, cityIO can hash and cache prior analysis results to

Figure 2: CityScope MoCho
User interaction with CS TUI: Groups of up to 4 users can freely
interact with the CS TUI and amend the urban design setup on the
CS table-top. Interaction results are computed and visualized on
both vertical (metro-scale) and horizontal (parcel-scale) planes. A
TUI slider (bottom left corner) allows density and building-height

iteration for the land-use type poised into the slider slot.

avoid redundant computation leading to faster response time, cru-
cial for user-interaction. This micro-service architecture allows for
an extendable CS framework, in which multiple demanding compu-
tation modules (such as noise, energy or mobility) can cross-interact
without affecting performance and experience of end-user.

3.4 MoCho API
The MoCho API is the component responsible for predicting the
mobility choices of each simulated individual in response to the
user interactions. This module listens to the cityIO API for changes
to the state of the TUI interaction data. When a change is detected,
the module creates new synthetic individuals corresponding to the
new residential and commercial buildings and assigns their home
and work locations as described in section 2. The residential and
employment densities of the tracts containing the new buildings
are also updated. The modes of transportation for each commuting
trip are then predicted using the calibrated MC model. Finally, the
carbon emissions and mortality impacts of the change in mobility
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patterns are calculated. The results are composed in JSON format
and exposed as HTTP end-points.

The user interactions can lead to changes in the mobility choice
and impact predictions in three ways. Firstly, when residential
and commercial units are added to denser, more central parts of
the city, the newly spawned individuals will be more likely to
choose workplaces with shorter commutes. Secondly, when new
units are added to parts of the city where the current population of
residents/workers has personal characteristics which tend to favor
cycling (for example), the newly spawned people will tend to also
have those characteristics. Lastly, the addition of new buildings
affects the attributes of the census tract, such as overall residential
and employment density and these attributes can affect the mode
choice probabilities of all people living and working in the census
tract.

3.5 Geodata API
Census tracts and other geo-spatial data are required by multiple
modules to compute MC as well as to visualized the model’s pre-
dictions. In order to ensure that the geo-data used by the different
modules is always consistent, a data-service module is dissociated
from the computation API and generalized as a service. For this
purpose, an additional HTTP end-point was designed to service
GeoJson data for the study area, in the case study of section 4, geo-
data for the Boston metro area and for a selected interactive region
in Cambridge, MA were served. This API can be easily scaled to
serve MoCho or other modules in different regions, given access
and availability of spatial data.

4 CASE STUDY: MOCHO FOR ’VOLPE’
DEVELOPMENT

To examine the MC model in a real-world mobility environment, a
site under development in Kendall Sq., Cambridge MA was selected.
In addition, a CS TUI platform and a cityIO systemwere constructed
to support real-time users’ interaction and visualization of the
model’s prediction. This Sectionwill explore the selected geography,
the CS interaction and model’s prediction in details.

4.1 Volpe Site
In the past two decades, the Kendall Sq. area has undergone mas-
sive transformation as a result of emerging biotech and startup
industries, fueled by its proximity to MIT and Harvard campuses.
Residential density of 3,000 inhabitants per sq/km, limited housing
stock and growing land values force much of the area’s workforce
to commute. Restrictive zoning ordinance and the lack of affordable-
housing incentives demote developers from constructing the nec-
essary range of housing options, thus promoting mono-functional
developments. The low residential density is matched with scarcity
of services, amenities and 3rd-places [6]. A 14-acres site in the
heart of Kendall Sq. was selected as a test-bed for the MC model
prediction and CS TUI. Known as ’Volpe’, the site is a United States
General Services Administration (GSA) parcel which is planned to
be fully redeveloped by MIT in the next decade. MIT intends to
develop housing, commercial and lab space, retail and open space
on 10 out of the site’s 14 acres. In total, this amounts to 1.7 million
sqft of commercial development and nearly 1,400 housing units

with building heights ranging from 170 to 500 feet. 40% of this
development would be housing, including 300 mid-and-low income
units. 65% of ground floors on the site’s main streets would contain
retail and active street uses and approximately 2.5 acres would
feature open space [26].

4.2 CityScope MoCho
A CS table, shown in Figure 2 was designed to encompass the Volpe
site and its immediate surroundings. This covers a region of 0.5sqkm
at a scale of 1:500 where each 4x4 LEGO-tile represents a 16sqm
or 4sqm per each LEGO stud. This abstraction downsamples the
fine detail of building-form and urban-design and instead focuses
on the design of zoning envelopes and general urban structure.
In the CS MoCho platform, six major classes of land uses were
defined: green open spaces, streets, high-income housing (’Housing-
1’), mid-to-low income housing (’Housing-2’), large companies’
development (’Commercial-1’), and startup and co-working spaces
development (’Commercial-2’). Each LEGO tile on the CS TUI is
classified with one of these land-uses. An empty cell or a non-type
due to scanning issues defaults to open-space. Using the CS TUI,
users could edit the position of each grid-cell, add or remove them
and change their proximity to one another. This allows a degree of
discrete urban design that is more fine-grained than classic zoning
exercises. As such, allocating different tiles next to the each other
(i.e, two tiles of type ’housing-2’ and one tile of type ’commercial-
1’) would be translated as a mixed-use structure with multistory
housing and offices. A TUI slider adds an additional dynamic control
which allows the density (height) of all cells of the same class (e.g.,
’Housing-2’) to be altered at the same time. This control allows
rapid iteration over different design scenarios for the Volpe parcel,
with variations in spatial organization, land-use distribution as well
as the density of each land use.

4.3 Real-time Model Output and UI
As users interact with the CS TUI, a record of their interactions
is delivered to the different APIs as previously described. These
APIs yield analysis results that are projected back into the TUI
table-top surface as well as onto a vertically mounted display using
two web-browser instances, as shown in Figure 4.

4.3.1 MoCho Vertical Display. This display converges and vi-
sualizes the results of both the MC model, the scanned TUI and a
Geo-data service. The Geo-data service parses census tract data of
the Greater Boston Area into GeoJson polygons and projects them
onto a cartographic background. Than, the results of the MoCho
API model are rendered as origin-destination (O-D) arcs connect-
ing pairs of different census-tracts, as shown in Figure 3. Each arc
represents the sum of trips between the pair of tracts. The arc color
represents the prevailing MC chosen by most trips leaving that
tract (i.e, green for bikes, purple for cars, etc.). The arc’s thickness
corresponds to the sum of trips by that mode. On average, nearly
11,000 arcs are reproduced with each user iteration; To avoid illeg-
ibility and visual noise, the UI renders only arcs terminating at a
given census tract, selected via user’s interaction. For each selected
census tract, the breakdown of trips by each mode also displayed
in numerical format. The UI was built and deployed as a node.js
application, using the ReactJS, mapboxGLJS and Deck.GL libraries.
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Figure 3: MC predictions
Two outputs of the MC model: (top) shows trips originating
at the Volpe site census tract and (bottom) showing trips
from a suburban tracts. The arcs display volumes of trips
(thicknesses) between each O-D pair for each mode (color).
As clearly shown, the suburban tract yields more car trips
with greater distances than those originating at the Volpe
site. A breakdown of trips and MC appears on the left.

4.3.2 MoCho TUI Table Top. The horizontal table-top of CS
MoCho is used as both the design space as well as a canvas for
visualisation. With each user interaction, the canvas updates a
schematics land-use diagram. A shadow mapping algorithm adds
perceptual depth to the grid tiles so that higher density tiles appear
taller than others. A background mapping service contextualizes
the design space to the Volpe site. Lastly, animated color dots rep-
resent individual trips entering or exiting the site. The dots colors
correspond to the arcs on the vertical display (i.e, purple dot is one
vehicular trip from one census tract) and animated to move from
general direction of that tract to its designated land-use destination.
A more advanced version of this UI could assign trips to routes
based on Dynamic User Equilibrium or micro-simulation and feed
updated travel times back to the mode choice predictions. Together,
the visual aids of CS MoCho allow users to easily associate a rela-
tively small-scale urban development with large scale MC impacts
and observe the effects of different scenarios in real-time.

4.4 Model Calibration Results
The mode choice model introduced in section 2 must be calibrated
for each location context. For the Case Study, data for the Boston
metro areawere used. Asmentioned in section 2.3, some exploratory
analysis and feature engineering is required for each case study
before model fitting. Through some exploratory analysis of PUMS

Figure 4: CityScope MoCho Interface Components
Vertical Display: (1) Selected tract showing trips and their MC
(2) MC trip ending at the Volpe site (3) Numerical output of
tract’s MC (4) GeoJson of 500 computed census tracts. Horizontal
TUI: (5) Tagged LEGO bricks with projected land-use scheme (6)
Immediate context surrounding the Volpe site design space

data for this study region, a number of variables were selected as
being likely to affect MC. As well, some features were converted to
different formats. For example, the age and income variables were
converted from continuous to binary variables by dividing each
into three quantiles and using binary variables to indicate records
in the lowest and highest groups. The encoding of travel-time also
required some experimentation. Time spent in different types of
travel activities, such as driving, waiting for a bus or walking, are
associated with different perceived costs and therefore should be
treated differently in discrete choice models, without being so spe-
cific as to cause model under-fitting. In this case study, through
some iteration, it was found that using the three variables of walk-
ing_time, cycling_time and in_vehicle led to a well fitted model
with sensible parameter estimates. The final model had a pseudo-
R-squared value of 0.45 which indicates a well fitting model. The
full list of parameters estimates is shown in Table 2. In interpreting
the parameters, it should be noted that the choice of driving was
taken as the reference choice. For example, all of the parameters
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Table 2: Multinomial Logit model calibration Results

Features Cycle Walk Transit
alternative_specific_constant -6.2687 -4.2422 -4.0632

employment_density_home_tract 9.6306 23.0826 9.7915
employment_density_work_tract 4.3132 9.1642 13.4858
residential_density_home_tract 47.2316 75.5508 53.945
residential_density_work_tract 32.9934 - 30.7119

age_youngest 0.6831 0.4743 0.31
age_oldest - - -0.1701

income_lowest 0.3672 0.4887 0.2788
college_degree 0.8974 0.4997 0.1427
grad_degree 0.4789 0.1884 -

female -0.7425 - 0.0864
renter 0.5955 0.7435 0.7031

non_profit_worker 0.8203 0.376 0.2227
All

walking time -0.0004
vehicle_time -0.0002
cycling time -0.0005

cost -0.1424

for the density variables are positive, indicating that increases in
residential or employment density in one’s home or workplace are
associated with increased likelihood of cycling, walking or public
transit relative to driving. The travel-time parameters show that
time spent cycling is perceived as the most costly whereas time
spent in vehicles is the least costly. This is in line with previous
research and conventional wisdom [20]. Finally, some interesting
associations are found between personal characteristics and the
likelihood of taking each mode. For example, the model shows that
having a college degree, a graduate degree and/or working for a
non-profit decreases one’s likelihood of driving and in particular,
increases one’s likelihood of taking active modes. Also, those in
the youngest age group and lowest income group are less likely to
drive than others.

5 CONCLUSION
This paper has described the design and deployment of a CityScope
instance focused on predicting mobility choices and societal im-
pacts in response to user inputs through a Tangible User Interface.
While there already exist tools for predicting MC and for estimating
the health and environmental impacts of transport, few efforts have
been made to integrate both of these modelling steps in an end-to-
end tool. Moreover, using these models for predictions typically
requires laborious specification of inputs by professionals with spe-
cialised skills. The tool presented in this paper is the first to provide
an intuitive user-interface to such models, allowing multiple peo-
ple with varying levels of expertise to collaboratively experiment
with different urban designs scenarios with real-time feedback. The
underlying models are rigorously calibrated using publicly avail-
able data sources to ensure the credibility of the model predictions.
Over the past year, hundreds of users, both professionals and non-
experts interacted with the tool at an MIT demo space. Although
not designed for external usage, 100 monthly users explored the
MoCho endpoint, publicly available as a git repository and website.

As observed by Alrashed, et al., CS deployments have proven to
streamline complex urban planning and design questions [3]. CS
MoCho advanced the CS framework with on-demand MC machine-
learning predictions, a distributed computational back-end and an
end-to-end online user interface. This allows stakeholders such
as public health professionals or mayors – who may not be ex-
perts in transportation or statistical modelling – to participate in
an evidence-based urban design process.
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