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ABSTRACT
Bike sharing has become one of the major choices of transportation
for residents in metropolitan cities worldwide. A station-based bike
sharing system is usually operated in the way that a user picks up
a bike from one station, and drops it off at another. Bike stations
are, however, not static, as the bike stations are often reconfigured
to accommodate changing demands or city urbanization over time.
One of the key operations is to evaluate candidate locations and
install new stations to expand the bike sharing station network.
Conventional practices have been studied to predict existing station
usage, while evaluating new stations is highly challenging due to
the lack of the historical bike usage.

To fill this gap, in this work we propose a novel and efficient
bike station-level prediction algorithm called AtCoR, which can
predict the bike usage at both existing and new stations (candidate
locations during reconfiguration). In order to address the lack of
historical data issues, virtual historical usage of new stations is
generated according to their correlations with the surrounding ex-
isting stations, for AtCoR model initialization. We have designed
novel station-centered heatmaps which characterize for each target
station centered at the heatmap the trend that riders travel between
it and the station’s neighboring regions, enabling the model to cap-
ture the learnable features of the bike station network. The captured
features are further applied to the prediction of bike usage for new
stations. Our extensive experiment study on more than 23 million
trips from three major bike sharing systems in US, including New
York City, Chicago and Los Angeles, shows that AtCoR outperforms
baselines and state-of-art models in prediction of both existing and
future stations.

KEYWORDS
bike sharing, usage prediction, station-level, new stations, pick-ups
and drop-offs, attention, spatio-temporal

1 INTRODUCTION
Thanks to mobile networking and location-based services, bike
sharing has become one of the major transportation modalities for
urban residents worldwide due to its convenience and efficiency. As
a representative product of the sharing economy, it is often hailed
as the excellent helper to solve the “last mile” problem in citizen
transportation. Given the social and business importance, the bike
sharing market is estimated to hit US$5 billion by 20251.

A station-based bike sharing system (each station is equipped
with multiple docks for bike parking) is usually operated in the way

1https://www.globenewswire.com/news-release/2019/12/03/1955257/0/en/Bike-
Sharing-Market-is-Predicted-to-Hit-5-Billion-by-2025-P-S-Intelligence.html

Figure 1: Illustration of bike sharing system and new station usage
prediction.

that a user or rider picks up a bike from one station (pick-ups) and
drops it off at another (drop-offs). All the resultant bike trips (usage
that consists of pairs of pick-ups and drop-offs) connect different
parts of the city, forming the bike sharing station network. The bike
stations are, however, not static, as the bike sharing operators often
reconfigure the stations to accommodate changing demands or city
urbanization over time [8, 19], where a key operation is to evaluate
candidate locations and then install new stations to expand the
bike sharing station network [21, 34] as shown in Figure 1. It is
essential for the operators to know the potential bike usage of a fu-
ture station at a certain candidate location beforehand, which helps
predicting the station profitability as well as its positive/negative
effect upon the local mobility and traffic networks, enhancing the
bike sharing service quality to the local community. This further
benefits the future bike sharing network operations, including sta-
tion re-balancing [14, 20, 26, 27, 31] and bike route pre-planning
[35].

Despite the business and social importance, predicting bike usage
at future stations is extremely challenging due to the lack of histori-
cal bike usage data of those stations. Conventional practices include
user survey, crowdsourced feedbacks and public hearing, investigat-
ing the local demands, which is often costly and time-consuming.
Operating regulations are also provided for bike sharing operators
as guidance on candidate station locations, which is based primarily
on geo-information such as distance to road intersections/public
transit stations and station network density2. However, such guid-
ance is often too general to take into account uniqueness of different
cities, causing inefficiency in station reconfiguration as well as re-
duced service quality and profit loss. While most of the existing
studies focus on predicting the bike usage at the existing stations,
only a few of them have comprehensively explored how to forecast
new stations for the station reconfiguration purposes.

2https://www.transformative-mobility.org/assets/publications/The-Bikeshare-
Planning-Guide-ITDP-Datei.pdf
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To fill this gap, in this work we propose a novel bike station pre-
diction algorithm called AtCoR, based on Attention Convolutional
Recurrent Neural Network, for predicting station-based bike us-
age of future stations. To tackle the lack of historical data issues
for future/new stations to be deployed, virtual historical usage
of new stations is generated according to their correlation with
the surrounding existing stations. To predict the usage of new
bike stations for reconfiguration decisions, we have designed novel
station-centered heatmaps which characterize for each target sta-
tion centered at the heatmap the trend that riders travel between it
and the neighboring regions, so that the model is able to capture
the learnable common patterns of the bike station network through
a convolutional neural network (CNN). A Long Short-Term Memory
(LSTM) neural network with temporal attention mask leverages the
common patterns with integration of historical data and external
factors, such as weekends, holidays, and weather, to predict the
bike usage for existing stations. The captured bike usage features
are then used to predict the pick-ups and drop-offs for new stations
along with the virtual historical usage. An overview of information
flow of this work is illustrated in Figure 2, summarizing the above
process.

Our main technical contributions are as follows:

1) Comprehensive bike data analysis for station prediction de-
signs: We have conducted comprehensive and detailed real-
world data analysis on how the weather conditions, regional
bike usage and surrounding POIs impact the bike usage in
the metropolitan area like New York City (NYC), Chicago
and Los Angeles (LA), and visualized them to validate our
design insights for station reconfiguration prediction. These
features serve as the shared patterns leveraged for the bike
usage prediction, including predicting for the new stations.

2) Dynamic urban bike usage prediction for reconfigured station
networks: We have designed a novel scheme called AtCoR to
predict the station-level bike usage for new/future stations
(candidate locations for reconfiguration) as well as exist-
ing/fixed ones.We propose a novel design of station-centered
feature heatmap representation as an input of AtCoR, which
calculates the differences between the features at the loca-
tion of each station and those at the surrounding areas. The
heatmaps account for the trend that riders travel from the
center station to the neighborhood. The inclusion of the
heatmaps significantly improves the accuracy of usage pre-
dictions. Heatmaps are then fed to AtCoRwhich consists of a
deep Convolutional Neural Network (CNN) and a Long Short-
Term Memory (LSTM) network with integration of temporal
attention mechanism.

3) Extensive experimental studies with real-world datasets: We
have conducted extensive experimental studies upon 23,955,989
trips in total, across three major bike sharing systems in the
United States: 20,551,697 from Citi Bike in New York City
(NYC), 3,113,950 from Divvy in Chicago, and 290,342 from
Metro Bike in Los Angeles (LA). Our experimental studies,
upon both the existing and new stations in the bike station
network reconfiguration, have validated that AtCoR outper-
forms the other baseline models in multi-station predictions,
often by more than 20% error reduction.

Figure 2: System overview and information flow of AtCoR.
While our studies focus on station-based bike sharing, the model

and algorithm derived can be further extended to other transporta-
tion platformwith deployment and expansion operations, including
ride/car sharing [3, 9, 15] and scooter sharing [11].

The rest of the paper is organized as follows. We first conduct a
brief survey on related studies in Section 2. Then we analyze the
datasets, and find out the features and their corresponding repre-
sentations for model input Section 3. Then the model is further
presented in Section 4. Afterwards, we present our extensive ex-
perimental studies to evaluate the performance of AtCoR for both
existing and new stations in Section 5. We will discuss the deploy-
ment in Section 6, and conclude in Section 7.

2 RELATEDWORK
Traffic flow prediction has been studied recently due to the advances
of intelligent transportation and smart cities. Gong et al. proposed a
potential passenger flow predictor to help the decision on the places
to construct new metro station [7]. Tang et al. tackled the dense and
incomplete trajectories for citywide traffic volume inference [30].
For dockless bike sharing system, the potential bike distribution
and the detection of parking hotspots in a new city has been made
by Liu et al. [22, 23]. Different from above works on dockless bike
sharing, we focus on station-based deployment due to its wider
social acceptance, and our studies provide highly comprehensive
studies of predicting usage for new/future stations before the bike
sharing station reconfiguration [8].

Based on bike usage prediction granularity, there are three cate-
gories of prediction models in current works in the bike sharing
systems: city-level, cluster-level, and station-level [17]. In city-level
prediction, the aim is to predict bike usage for a whole city, while
at the cluster level the goal is to predict bike usage for clusters of
bike stations. The station cluster is generated by clustering algo-
rithms such as the Bipartite Station Clustering [16], the Community
Detection and the Agglomerative Hierarchical Clustering method
[36], the K-means clustering and the Latent Dirichlet Allocation
(LDA). Chen et al. further considered clusters as dynamic rather
than static [2]. While city-level and cluster-level predictions save
the computational cost by simplifying the problems, station-level
[1, 4, 12, 14] prediction still benefits the bike sharing system man-
agement the most, including fine-grained station rebalancing, but
yet is challenging.

Recent research efforts have also been made upon traffic predic-
tion beyond the bike sharing systems. Deep learning approaches
have been studied for traffic flow prediction [6, 10, 11, 13, 24, 33].
Yao et al. proposed a CNN-LSTM based transfer learning method to
predict traffic flows across different cities [32]. Pan et al. used a
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Table 1: List of symbols and definitions
Symbols Definitions
𝑛 New stations
𝑓 Existing stations
F Set of existing stations
𝑗, 𝑘 Index of the stations
𝑇, 𝑆 Ranges of timestamps
𝑡, 𝜏 Indices of timestamps
T Number of timestamps
𝑔𝑙𝑎𝑡 , 𝑔𝑙𝑜𝑛 Height and width of each grid
G𝑙𝑎𝑡 , G𝑙𝑜𝑛, P Dimensions of station-centered heatmaps
H Station-centered heatmaps
𝑒 Entries of station-centered heatmaps
𝐿 Station usage
ℎ, 𝑤, 𝑐 Parameters of the convolutional layers
x Input of LSTM
h LSTM hidden state
c LSTM cell state
𝑑 Number of hidden units of LSTM
v,W,U, b Trainable parameters
𝜆,𝛾 Attention scores between a pair of states
d Decoder’s input
ex External features

𝜔
Similarity scores between a new station and
its surrounding existing peers

deep meta learning model to predict urban traffic [29]. Ma et al.
constructed spatial-temporal graphs of urban traffic which was
learned by a deep convolutional neural network [25]. In this work,
we study a novel approach based on deep learning designs and
data-driven studies to handle the new stations usage prediction
problems. Specifically, we propose a novel approach AtCoR which
consists of a CNN component for modeling spatial characteristics
and a LSTM with integration of a temporal attention mechanism for
capturing temporal characteristics .

3 DATA ANALYSIS & FEATURE DESIGNS
Because no historical usage data of new stations is available, future
mobility patterns might only be predicted through accessible spatial
and temporal characteristics of the stations. In this work, we pro-
pose using station specific regional usage, points of interest (POIs),
weather conditions and holidays as input features as they are all
available once the locations and launching time of new stations are
provided by system operators.

In this section, we first present the preliminary concepts defined
for the feature designs of bike sharing stations in Section 3.1.1.
Then in Section 3.2 we discuss our representation design of the
features we choose, namely station-centered heatmaps, which signif-
icantly improve the model performance. We further cluster station
networks based on such heatmaps to save computational cost of
training.

Table 1 summarizes all the symbols as well as their definitions
in this work.

3.1 Preliminary for Station Feature Studies
3.1.1 Overview of Datasets and New/Existing Stations. We conduct
our data analytics upon three datasets: Citi Bike of NYC3 of 2019
3https://www.citibikenyc.com/
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Figure 3: The number of active existing stations and new stations
per month in NYC, Chicago and LA.

(20,551,697 trips), Divvy Bike of Chicago4 of the first three quarters
of 2019 (3,113,950 trips), and Metro Bike of Los Angeles5 of 2019
(3,113,950 trips).

In this study, the new stations established in a set of certain time
intervals [𝑇,𝑇 ′] are defined as the ones that have no historical
bike usage data in the past 30 days, i.e. from (𝑇 /24 − 30) days to
𝑇 considering 𝑇 on hourly basis, while the active existing stations
(or existing stations in short) in a certain time interval [𝑆, 𝑆 ′] are
defined as the ones that have historical usage data every day in
this time interval. Note that active existing stations focus on the
existing stations which are populous with everyday bike usage.

For example, there are 454 active existing stations at the New
York City (NYC) in 2019 in total, and from April 11, 2019 to July 19,
2019 there are 631 existing stations, while in June 2019 there are
8 new stations established, compared to totally 1,047 unique bike
station coordinates in the whole year including those stations that
are newly installed, removed, and relocated. The monthly number
of active existing stations and new stations are shown in Figure 3
for the three datasets as demonstration.

We select the following spatial and temporal features in our
modeling: regional usage in areas where bike stations are located,
points of interest, weather conditions and holidays and weekends.
Since there is no historical bike usage at the future locations of the
new bike stations, it is difficult to directly characterize the mobility
patterns for the target locations. However, the mobility patterns
are strongly related to the spatial and temporal features of those
locations. Thus, in this work AtCoR incorporates the correlations
with the above features for the new station prediction.

3.1.2 Regional Usage. To characterize the urban bike usage in a
computationally efficient manner, we discretize the neighborhood
city map around each station into grids, each of which is an𝑔𝑙𝑎𝑡 m×
𝑔𝑙𝑜𝑛 m rectangular region. The total bike pick-ups/drop-offs within
the grid can represent the bike usage popularity of this specific
region. Bikes rented at the popular regions tend to be returned
at surrounding regions. Therefore, the station-centered regional
usage distribution is chosen an essential input feature.

3.1.3 Points of Interest (POIs). Another key insight of feature se-
lection is that the differences in the POI distributions around each
station can steer the bike riders’ travels with the corresponding
preferences or purposes. Therefore, the POI distributions are used
as another important features. Following the manners of defining
regional station usage, the POI distributions are defined as the to-
tal numbers of POIs within a 𝑔𝑙𝑎𝑡 m × 𝑔𝑙𝑜𝑛 m grid for each POI
category.

4https://data.cityofchicago.org/Transportation/Divvy-Trips/fg6s-gzvg
5https://bikeshare.metro.net/
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Figure 4: POIs distributions around bike stations in NYC, Chicago
and LA.

Figure 4 illustrates some examples of the different distributions
of different categories of POIs in a 500m × 500m grid region. POIs
around active existing stations from April 11, 2019 to July 19, 2019
are shown here with the numbers of POIs normalized by the min-
max method.

Specifically, the POIs data of NYC are obtained through NYC
Open Data6 which contain 13 major categories, such as residential,
education facility, cultural facility, recreational facility, social ser-
vices, transportation facility, commercial, government facility (non
public safety), religious institution, health services, public safety,
water and others. The POIs of Chicago are obtained through Open-
StreetMap Overpass API7 where POIs are categorized by the OSM
tag of amenity including sustenance, education, transportation,
financial, healthcare, entertainment, arts & culture, and others. The
POIs of LA are obtained through LAC Open Data8 which include
communications, transportation, private industry, health and men-
tal health, social services, postal, arts and recreation, community
groups, municipal services, public safety, education, government,
emergency response, physical features and environment.

3.1.4 Weather Conditions, Holidays and Weekends. The station
usage is highly correlated with the weather conditions. We have
collected and analyzed the weather condition data from open source
weather data API9. We have analyzed the correlations between
weather conditions and the station usage. Analysis of one-year bike
usage reveals that both high and low temperature decreases the
bike usage. The effect of daily temperature, precipitation and wind
speed on daily overall usage of the city is illustrated in Figures 5 and
6. Clearly, precipitation, including rain, snow and large wind speed,
significantly reduces the bike usage. Given above, the weather
conditions including temperature, precipitation and wind speed are
chosen as the input features. Besides weather conditions, the bike
usage has different patterns on federal holidays and weekends from
that on workdays. Specifically, we set the indicator as 1 if a time
interval belongs to holiday/weekend periods, or 0 for weekdays
otherwise. As an example, for the time interval of [0:00 a.m., 1:00
a.m.], 2019-01-01, the external vector including temperature, wind
speed, precipitation and holiday/weekends, is given by [47 °F, 1.5
mph, 0.08 in, 1].

3.2 Feature Representations & Designs
Given the spatial and temporal features presented above for each
station, we present a representation design to integrate them as the
model inputs, which will be discussed in details as followed.

6https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj
7https://wiki.openstreetmap.org/wiki/Overpass_API
8https://data.lacounty.gov/
9https://api.weather.com
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Figure 6: The effect of precipitation and wind speed on city’s daily
overall bike usage.

3.2.1 Station-centered Heatmaps. We construct a G𝑙𝑎𝑡 × G𝑙𝑜𝑛 × P
heatmap centered at the stations studied where each grid is a 𝑔𝑙𝑎𝑡 m
× 𝑔𝑙𝑜𝑛 m area on city map with P channels including the regional
usage and POIs distribution of the grid area. The first two channels
of the heatmap are the regional pick-ups and drop-offs, respectively,
with each of the following channel as the POIs distributions of one
POIs category. Every entry of the heatmaps is the regional usage
or the POIs amount for the corresponding grid location. Figure
7 shows a 11 × 11 regional pick-ups as the first channel of the
station-centered heatmap for a candidate station in NYC.

After construction of the heatmaps centered at a particular sta-
tion, the heatmaps are normalized by subtracting each one of the
G𝑙𝑎𝑡 × G𝑙𝑜𝑛 grid features by the features of the center grid. This
way, the normalized heatmaps represent the riders’ motivations or
mobility trends departing from this station to the neighborhoods,
characterizing the spatial-temporal features near a station.

3.2.2 Station Clustering. To enhance the learning efficiency upon
large-scale bike station network, we design a clustering scheme
for the bike stations and train the AtCoR for certain cluster. We
cluster existing stations and newly established ones all together.
This way, we can save computational cost by reducing the amount
of stations being trained, while the predictions upon new stations
can be enabled by the patterns learned from other stations.

We adopt the K-means clustering algorithm to find out the clus-
ters from the normalized station-centered heatmaps constructed
as in Section 3.2. We first calculate the sum of all the G𝑙𝑎𝑡 × G𝑙𝑜𝑛
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Figure 7: Regional pick-ups for a candidate station (red cycle) in
Manhattan, NYC on (a) Sunday 01-20-2019 from 8:00 a.m. to 9:00
a.m.; (b) Monday 01-21-2019 from 8:00 a.m. to 9:00 a.m.
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Figure 8: The cluster results of existing and new stations. The clus-
ters represented by dots contain new stations, while the cross ones
have only existing stations.

entries at each channel, and the mean of heatmaps over the time-
frame [𝑇,𝑇 ′], generating vectors of lengthP. The POI metric scores
between the heatmaps of stations 𝑗 and 𝑘 for the clustering are cal-
culated from the Euclidean distance between the generated vector:

𝑆𝑖𝑚 𝑗,𝑘 =






G𝑙𝑎𝑡×G𝑙𝑜𝑛∑
𝑒=1

H
e
𝑗 −

G𝑙𝑎𝑡×G𝑙𝑜𝑛∑
𝑒=1

H
e
𝑘






 . (1)

The combination of both existing and new stations in each city
are then clustered based on the above metric scores. The results of
clustering existing and new stations for NYC and Chicago based
on 11 × 11 × P heatmaps are shown below on Figure 8.

4 ATCOR: USAGE PREDICTION FOR STATION
NETWORK RECONFIGURATION

We further discuss the details of AtCoR model in this section. We
first define our usage problem, followed by a description of model
structure in Section 4.1. Our model is trained on the datasets of
active existing stations, and the details will be discussed in Section
4.2.

4.1 Problem & Model Definitions
4.1.1 Problem Definition. The problem in this study can be de-
fined as: given the input station-centered heatmaps, Hn,𝜏 ′ , and the
external features ex𝜏 ′ , including the weather conditions and week-
end/holidays information, for each station 𝑛 at the period of time
𝜏 ′ ∈ [1,T], either an existing or new one after reconfiguration,
predict future usage (pick-ups and drop-offs), 𝐿𝑛,𝜏 , where 𝜏 = T + 1
is the target time interval for an existing station or the one when
the new station is established after reconfiguration.

Figure 9: Illustration of model designs in AtCoR.

4.1.2 Model Overview. Our model consists of three major modules.
1) Spatial feature learning: A deep-channel CNN learns the sta-

tion specific heatmaps which describe the driving force of
usage for each particular station based on its spatial charac-
teristics.

2) Temporal feature learning: The output of CNN combined with
historical usage data is then fed as input of a LSTM which
learns the temporal pattern of station’s usage.

3) Feature attention characterization: A temporal attentionmech-
anism is applied to further capture and differentiate the cor-
relations between features across different timestamps.

An overview of AtCoR is further illustrated in Figure 9. The details
of each module will be presented as follows.

4.1.3 Convolutional Neural Network (CNN). As described before,
the station-specific or station-centered heatmaps as the representa-
tion of spatial features, i.e. the POIs distribution and regional usage
popularity, indicate the motivation of people heading to places
around and hence correlate with the bike usage. Differences in this
driving force may result in different directions of bike usage and are
represented by the designed heatmaps. However, the mechanism
behind this driving force of bike usage can be too complicated to
formulate, and simple vector concatenation is not enough. There-
fore, we propose a deep-channel CNN model to learn the correlation
between station specific spatial features in an area and station bike
usage. Note that different from previous studies [25], we focus on
learning station-centered heatmaps to further identify the useful
correlations between the center station’s usage and the neighbor-
hood.

The CNN has 𝐶 convolutional layers, each of which is followed
by a max pooling layers. The size of the convolutional layers are
ℎ ×𝑤 ×𝑐 , all with relu activation function. A fully connected layer
is implemented as the last layer to generate the output of CNN of
size 1.

4.1.4 Long Short-Term Memory (LSTM). The output of the CNN is
concatenated with historical usage data as the input of LSTM. The
last hidden state of the LSTM cell is connected to a fully connected
layer to generate predictions. The equations of an LSTM cell at
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timestamp 𝑡 are listed below:

i𝑡 = 𝜎

(
W𝑖 [h𝑡−1, x𝑡 ] + b𝑖

)
,

f𝑡 = 𝜎

(
W𝑓 [h𝑡−1, x𝑡 ] + b𝑓

)
,

o𝑡 = 𝜎
(
W𝑜 [h𝑡−1, x𝑡 ] + b𝑜

)
,

c̃𝑡 = tanh
(
W𝑖 [h𝑡−1, x𝑡 ] + b𝑖

)
,

c𝑡 = (f𝑡 ∗ c𝑡−1 + i𝑡 ∗ c̃𝑡 ) ,
h𝑡 = tanh (c𝑡 ) ∗ o𝑡 ,

(2)

where x𝑡 ∈ R𝑙 is the input of this timestamp of size 𝑙 , which is
the concatenation of historical usage and the CNN output, c𝑡 and h𝑡
are the cell state and hidden state of LSTM cell at time 𝑡 , i𝑡 , f𝑡 , o𝑡
and c̃𝑡 are intermediate variables of LSTM cell, and W𝑞 ∈ R𝑑×(𝑑+𝑙)
and b𝑞 ∈ R𝑑 where 𝑞 = i, f, o are trainable variables, and 𝑑 is the
number of hidden units of LSTM cell.

4.1.5 Temporal Attention. The temporal attention mechanism cap-
tures correlation between features across different timestamps. The
intuition behind this is that there is a strong temporal dependency
of the usage of a station at time 𝑡 , for example, on the usage at the
same time one day ago. The temporal attention scores between the
current decoder LSTM timestep 𝑡 and one of the previous encoder
LSTM hidden states, 𝜆𝑡,𝑡 ′ , are calculated as Eq. (3) by a concatenation
manner:

𝜆𝑡,𝑡 ′ = v⊺𝑎 tanh (W𝑎 [h𝑡−1; c𝑡−1] + U𝑎h𝑡 ′ + b𝑎) , (3)

where v𝑎, b𝑎 ∈ R𝑑 , W𝑎 ∈ R𝑑×2𝑑 and U𝑎 ∈ R𝑑×𝑑 are learnable
parameters, 𝑑 is the number of hidden units of LSTM cell, h𝑡 and c𝑡
are hidden state and cell state of decoder at timestamp 𝑡 , and h𝑡 ′ is
hidden state of encoder at timestamp 𝑡 ′, which is in range of [1,T].
The attention weight, denoted as 𝛾𝑡,𝑡 ′ , is then a softmax function
of 𝜆𝑡,𝑡 ′ as in Eq. (4):

𝛾𝑡,𝑡 ′ =
exp

(
𝜆𝑡,𝑡 ′

)∑T
𝑡=1 exp

(
𝜆𝑡,𝑡 ′

) . (4)

The weighted sum of the encoder LSTM hidden states, d𝑡 , shown in
Eq. (5) concatenated with external features ext, [d𝑡 : ext], serves
as the input of decoder:

d𝑡 =
T∑

𝑡 ′=1
𝛾𝑡,𝑡 ′h𝑡 ′, (5)

where T is the number of encoder timestamps.

4.2 Model Training & Prediction for New
Stations

As conventional practices, we handle the existing station prediction
based on the historical data available. Given absence of historical
data, the predictions of the usage for new stations are based on
the model trained on the active existing stations. To address the
initialization problem of the model, during the training process,
we generate the virtual trip data based on the weighted average of
those from multiple existing stations. This is achieved by randomly
picking a batch from the samples of all the existing stations at each
training epoch. This way, the model is able to learn their shared bike
usage patterns across all the existing stations, and such knowledge

learned can be used to predict the usage of new stations, considering
that the new stations share correlated spatial and temporal usage
features of existing stations.

The model is trained upon the existing stations within each clus-
ter. To address the model initialization without historical data, for
the new stations we design an efficient mechanism to generate the
virtual historical usage from those of surrounding existing stations.
We note that the two adjacent stations have similar bike usage and
mobility patterns because of their similar spatial-temporal char-
acteristics. Therefore, we generate the virtual bike usage by the
distances between stations. Specifically, we compute the geographic
similarity score between a new station, 𝑛, and an existing peer in
its neighborhood, 𝑓 , based on their mutual geographic distance in
km:

𝑆𝑖𝑚𝑛,𝑓 =
1

distance (𝑛, 𝑓 ) . (6)

Then the similarity scores across all the existing stations is normal-
ized to find the weights for the known bike usage assigned upon
each existing station:

𝜔𝑛,𝑓 =

𝑆𝑖𝑚2
𝑛,𝑓∑F

𝑓 =1 𝑆𝑖𝑚
2
𝑛,𝑓

. (7)

The virtual bike usage for the new station at time 𝜏 based on the
historical usage of those existing stations, 𝐿𝑓 ,𝜏 is finally calculated
by:

𝐿𝑛,𝜏 =

F∑
𝑓 ∈F

𝜔𝑛,𝑓 𝐿𝑓 ,𝜏 , (8)

where F is the set of existing stations.

5 EXPERIMENTAL STUDIES
In this section, we present the experimental results based on the
datasets of Citi (NYC), Divvy (Chicago) and Metro (LA). The ex-
perimental settings are first introduced in Section 5.1, followed by
experimental results on existing/new stations in Section 5.2.

5.1 Experimental Settings
We compare AtCoR with the following baselines and state-of-art
models on the given datasets:

(1) ARIMA: Auto Regressive Integrated Moving Average for
time-series forecasting. The size of sliding window is set to
be 24.

(2) RNN : Simple Recurrent Neural Network for time-series pre-
dictions [28]. The length of input sequence is 24.

(3) LSTM: Long Short-Term Memory neural network [18] pre-
dicts future usage with historical data of last 24 hour.

(4) GRU : Gated Recurrent Units as another recurrent neural
network for time-series predictions [5].

(5) GCN : Graph Convolutional Neural Networks with Data-
driven Graph Filter [1] predicts station-level usage taking
into account of station correlations.

We are leveraging the features for previous 24 hours to predict
the station-level bike usage for the next timestamp. For the eval-
uation of the existing stations for NYC and Chicago datasets, our
model as well as comparison schemes are trained based on the
hourly usage data from April 11, 2019 to July 19, 2019 (2,400 hours
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Figure 10: Distributions of bike trip distance (meters) for NYC,
Chicago and LA.

duration), and are tested on the hourly usage data from July 20,
2019 to August 18, 2019 (720 hours duration). For LA datasets, the
models are trained based on the 4-hour bike usage data in June 2019
(720 hours duration), and are tested on the data for the following
30 days (720 hours duration).

For the evaluation of the new stations, we find out all the de-
ployed stations fromMay to August 2019 for NYC and Chicago, and
those from June to December 2019 for LA. Our model as well as the
baselines are tested on the usage data within 4 weeks (672 hours
duration) for NYC and Chicago and 2 weeks for LA from the first
appearance of the hourly usage of the stations. The stations with
sufficient bike usage are of our interest here, and we discard those
with little usage (say, less than 10 pick-ups/drop-offs per day). For
new stations in LA, due to the large sparsity in the bike usage data,
we consider the appearance of consecutive bike usage as the first
usage and the start of our evaluations. The numbers of existing/new
stations studied in our experimental evaluations are further identi-
fied and listed as follows. The numbers of existing and new stations
studied, (existing, new), for each city are as follows: (631, 15) for
NYC, (229, 13) for Chicago, (48, 7) for LA. The existing and new
stations are clustered together in the manner described in Section
3.2.2. We train AtCoR and baselines models on all the clusters of
the three bike sharing systems. Then we evaluate models regarding
their predictions of new stations.

Figure 10 shows that a majority of bikes rented at one station
in NYC, Chicago and LA, are returned at stations beyond 500m
away, demonstrating that for a specific station there is a small
number (< 20%) of bike transitions between the stations within a
grid of 500m × 500m and the bikes rented at this region are mostly
returned to regions somewhere else. In addition, a majority of bike
trips are within the range of 500m and 5,000m as shown in Figure
10. Therefore, the size of station-centered heatmaps discussed in
Section 3.2.1 is set to be 11×11×P, where P is 2 (regional pick-ups
and drop-offs) plus the total number of POIs categories (13 for NYC,
7 for Chicago and 15 for LA), and each grid of the heatmaps is a
500m × 500m area on the city map. This way, the heatmaps cover
most of the areas where the riders can reach by the bikes rented
from the center station.

Other model parameters of AtCoR are set as followed. The CNN
component has 3 layers convolutional layers with sizes ℎ ×𝑤 × 𝑐;
we set 3 × 3 × 256, 3 × 3 × 128 and 2 × 2 × 64, respectively, and
relu activation function for each of them. Each of the first two
convolutional layers is followed by a maxpooling layer. The final
convolutional layer is connected with a fully connected layer which
converts the CNN’s output into the one of size 1. The number of
layers of LSTM is 1,024. The dropout rate for the LSTM is 0.5. The
learning rate is 0.001. The batch size is set to be 128. Total number
of training epochs is 5,000. We have implemented AtCoR and other
schemes in Python 3.7 and Tensorflow 2.1, and the models are

Table 2: Comparison between AtCoR and other baseline and state-of-
art models for existing stations of the three datasets.

Schemes ARIMA RNN GCN LSTM GRU AtCoR

Citi
Pick-up MAE 2.682 2.345 2.240 2.164 2.166 1.771

MSE 30.028 18.711 12.226 16.080 16.143 10.599

Drop-off MAE 2.564 2.265 2.084 2.100 2.112 1.730
MSE 24.762 16.514 11.318 14.210 14.245 9.447

Divvy
Pick-up MAE 1.964 1.832 2.300 1.437 1.418 1.263

MSE 23.693 14.866 6.382 11.293 10.732 7.687

Drop-off MAE 1.927 1.633 1.067 1.247 1.404 1.247
MSE 21.075 13.584 6.382 10.937 10.508 7.980

Metro
Pick-up MAE 2.126 3.258 1.276 1.878 1.936 1.462

MSE 8.578 16.071 4.895 7.471 7.26 4.879

Drop-off MAE 2.154 1.478 1.480 1.251 1.005 1.435
MSE 8.752 4.535 3.965 3.393 2.245 4.610

trained and evaluated upon a desktop server with Intel i5-8700K,
16GB RAM, Nvidia GTX 1060/1050Ti and Windows 10.

We use mean square error (MSE) as the training metric, and we
evaluate model performance as well as the results based on both
MSE and mean abosolute error (MAE):

𝑀𝑆𝐸 =
1
𝑀

𝑀∑
𝑖

(𝑦𝑖 − 𝑦𝑖 )2 , 𝑀𝐴𝐸 =
1
𝑀

𝑀∑
𝑖

|𝑦𝑖 − 𝑦𝑖 | , (9)

where M, 𝑦𝑖 and 𝑦𝑖 are the total number of predictions made by
the evaluated model, the ground-truth of the bike usage and the
predicted bike usage, respectively.

5.2 Experimental Results
5.2.1 Usage Prediction for Existing Stations. First, we test ourmodel
on all active existing stations for all three datasets. The accuracy
of bike usage predictions across the existing stations is shown in
Table 2. It is shown that our model achieves overall better accuracy
compared with other baselines for the systems in NYC, Chicago and
LA. It is mainly because the station-centered heatmaps incorporate
the trend that the bike riders travel between the stations. Focusing
upon each station’s neighborhood, a heatmap characterizes the
mobility patterns, which are learned and captured by AtCoR, and
thus the bike usage at the new stations with similar neighborhood
patterns can be further predicted. For Metro in LA, GCN achieves
comparable or slightly better performance like AtCoR, likely due to
the sparsity of bike station network in LA. Despite this, AtCoR has
shown high accuracy and robustness with complicated mobility
patterns.

Figure 11 illustrates the bike usage (pick-ups and drop-offs) pre-
dictions for the three existing stations in NYC, Chicago and LA. We
can observe that the predictions of AtCoR are highly accurate, and
close to the ground-truth measurements. Such accuracy can enable
advanced bike station operational applications like station demand
and supply rebalancing.

5.2.2 Bike Usage Prediction for New Stations. The predictions of
bike usage for new stations can be done using the knowledge
learned from the existing stations. Given the trained models from
all the existing stations, RNN, LSTM and GRU can be directly applied
to predict each individual new stations, and therefore we focus on
comparing AtCoR with the three approaches here. We leverage the
knowledge learned from the existing stations for the predictions of
new stations given the bike station network reconfiguration. MAE

7



UrbComp ’20, August 24, 2020, San Diego, CA Xi Yang and Suining He

0

20

40

60

Bi
ke

 P
ick

-u
ps

0 100 200 300 400 500 600 700
Time index

0

20

40

60

Bi
ke

 D
ro

p-
of

fs

Ground Truth Prediction

(a) A station at NYC (40.7659◦, -73.9763◦).
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(b) A station at Chicago (41.8782◦, -87.6319◦).
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(c) A station at LA (34.085◦,-118.259◦).

Figure 11: Hourly bike usage prediction for the existing stations in the three datasets.

Table 3: Performance comparison for predictions of new stations.
Schemes RNN LSTM GRU AtCoR

Citi
Pick-up MAE 2.922 2.760 2.736 2.495

MSE 20.961 18.652 18.461 15.883

Drop-off MAE 2.774 2.728 2.738 2.568
MSE 17.833 18.930 19.016 15.835

Divvy
Pick-up MAE 2.092 1.814 1.825 1.627

MSE 23.475 21.089 21.025 13.282

Drop-off MAE 1.812 1.589 1.639 1.442
MSE 14.126 11.491 12.317 8.223

Metro
Pick-up MAE 1.552 1.249 1.246 1.098

MSE 3.286 3.425 3.135 2.439

Drop-off MAE 1.588 1.583 1.216 1.043
MSE 3.683 3.662 2.463 2.795

Table 4: Comparison of performance between AtCoR w/ and w/o vir-
tual generated data.

Schemes Citi Divvy Metro
MAE MSE MAE MSE MAE MSE

Pick-up AtCoR w/ virtual 2.384 15.018 1.638 11.983 1.305 4.639
AtCoR w/o virtual 2.387 16.661 1.685 14.528 1.395 5.014

Drop-off AtCoR w/ virtual 2.666 15.892 1.589 9.320 1.561 5.797
AtCoR w/o virtual 2.547 16.510 1.522 10.300 1.727 7.929

and MSE of new stations’ usage predictions, pick-ups and drop-offs,
by AtCoR as well as three baselines, RNN, LSTM and GRU, are shown
in Table 3. As is shown, AtCoR outperforms those three baseline
models in predicting the usage of new stations for all three bike
sharing systems.

We illustrate the performance with and without the virtual bike
usage data generated. Virtual bike usage one day ahead of the first
bike usage of new stations are generated as in Section 4.2 as the
starting points. The virtual usage provides an initial inference for
the models regarding how the mobility pattern of a new station
possibly look like, enhancing the model accuracy as is shown in
Table 4. Here we only compare the MAE and MSE for predicting
the next 24 hours after the first use of the stations given the data
availability.

6 DISCUSSION
Incorporating Other Information: Despite the features selected in
this work as described in Section 3.1.1, other features may also be
correlated with bike usage, such as events and demographic distri-
butions [2]. However, such information is not considered due to
the limit of our current resources. Our prediction accuracy could be
further increased with the inclusion of those features in our model.

Nevertheless, the generic design of station-centered heatmaps as
the feature representations in this study allows the easy integration
of other information.
Sparsity of Usage Data: Though we focus on active existing stations
in this study, a lot of stations are not so active that their bike usage
is low, especially in LA . For experimental study of LA bike usage,
we consider 4-hour time interval as one timestamp to lower the
influence of data sparsity. Predicting the bike usage with sparsity is
challenging, yet important for system management. Further study
on how to deal with sparse historical data is necessary.
Similarity Scores for Virtual Data Generation: As mentioned in Sec-
tion 5.2.2, virtual historical usage is essential for the first few pre-
dictions, and their accuracy depends on the quality of the initial
inference in addition to the model performance. In this work, we
compute the virtual historical usage based on the mutual geomet-
ric distances between stations, which has been shown to benefit
predicting the new stations. However, further enhanced inference
can be achieved by inclusion of other information such as crowd’s
awareness of new stations, where a comprehensive mechanism is
needed for future study.

7 CONCLUSION
In this work, we propose a novel bike station prediction algorithm
called AtCoR for predicting station-based bike usage of future sta-
tions given bike station network reconfiguration. We design novel
station-centered heatmaps which characterize for each target sta-
tion centered at the heatmap the trend that the riders travel between
it and the neighboring regions, making the common patterns of
the bike station network learnable. AtCoR further leverages such
knowledge learned to predict the usage for new stations with the
aid of virtual historical usage of new stations generated according
to their correlation to the surrounding existing stations. Extensive
experiment study on the bike sharing systems of NYC, Chicago
and LA shows AtCoR is capable in predicting usage at new/future
stations as well as existing stations, and outperforms the baseline
and state-of-art models in our experimental evaluations.
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