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ABSTRACT
Street-level travel time estimation along with the temporal vari-

ations in patterns of travel times is an important component of

traffic planning and operation in modern urban settings. In this

work, we propose a scalable distributed-computing based method-

ology to leverage coarse-grained and aggregated travel time data

to estimate the street-level travel times of a given metropolitan

area. Our approach, termed TranSEC (Transportation State Esti-

mation Capability), leverages easy-to-obtain, aggregated data sets

with broad spatial coverage, such as the data published by Uber

Movement and can handle road networks of very large size such

as whole metropolitan areas. TranSEC is flexible enough to ac-

commodate augmentation with fine-grained but potentially more

expensive datasets, such as curated GPS-based data and probe data.

Our proposed methodology uses a graph representation of the

road network and combines several techniques such as weighted

shortest-path routing, a trip sampling and a biased travel time sam-

pling schemes, graph sparsification through betweenness centrality,

and an iterative optimization flow that solves successive constrained

least-squares optimization problems. TranSEC further uses graph

partitioning tools to enable distributed solution to the problem. We

demonstrate our method on the full Los Angeles metropolitan-area

where aggregated travel time data is available for trips between traf-

fic analysis zones using a 1280-core supercomputer and visualize

the temporal traffic trends at the street-level.
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1 INTRODUCTION
Big data and high performance computing paradigms are poised to

revolutionize the transportation sector in the coming years [32]. A

key requirement for a city transportation operation center is the

global knowledge (global in this context refers to a large metro-

politan area) of travel times and vehicle volumes which together

constitute the traffic state on both arterial and freeway road seg-

ments.

However, in literature, interstate links have received high-levels

of interest from the transportation research community as opposed

to arterial segments even though both these classes of streets are

important from the perspective of planning and operation. Potential

reasons includewide-spread loop counter installations and availabil-

ity of high quality data for inter-state links through public database

access. Conversely, gathering arterial data is expensive due to the

sheer number of probe sensors required for broad coverage [11].

Our work, termed, TranSEC, is concerned with filling the gap in

arterial travel-time estimation though our framework doesn’t distin-

guish between the types of links explicitly. This paper builds on two

of our prior published works [17, 24] that focused on travel-time

estimation at the TAZ (Traffic Analysis Zone) level and travel-time

estimation at the street level, respectively. We start with the pre-

viously developed methodology and then proceed to describe the

scaling methods and the distributed framework that makes it pos-

sible to estimate the travel times at scale, for large metropolitan

road networks. We note that personal navigation devices and ap-

plications for smartphones, focus on optimizing travel times for

individual drivers whereas TranSEC aims to provide a system-wide

view at the street-level to the operators. Further, while transporta-

tion data companies offer products catering to these requirements,

the cost of obtaining such highly granular data at scale can be very

steep.

The main contributions of the full TranSEC workflow are listed

as follows:

• We utilize the coarse-grained, aggregated TAZ-level data

and the underlying road network fabric to setup an over-

determined system of equations for street-level travel time

estimation. The problem setup is made possible by a com-

bination of weighted shortest path routing in graphs, trip

and biased travel time sampling and a flexible scheme that

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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address pseudo-sparsification of the graph for better regular-

ization and scalbility as well as provide the ability to augment

the coarse TAZ-level data with accurate fine-grained data.

• We make use of constraints and the convex combinations

of sequential iterates as a means of stabilizing solutions, im-

proving convergence rates while avoiding explicit penalty

functions for regularization. This allows us to make effec-

tive use of well-optimized least-squares routines for faster

solution times.

• Wedesign and implement a distributed strategy formetropolitan-

area-wide problems based on spatial partitioning, solving

independent problems and stitching the solutions for the

cut links. We leverage the developed approach and produce

travel-time estimates for different temporal windows for the

Los Angeles metropolitan area.

The paper is organized as follows. Section 2 describes related work

in the area of graph analytics, optimization, and machine learning

applied to road networks. Section 3 describes the Uber Movement

and the LA road network data used in this work. In the subsequent

sections, we describe the forward model and simulated trips, fol-

lowed by the optimization methodology (Section 4 and 5) used in

this work. In Sections 6 and 7, we discuss scalable implementations

of our proposed method in shared and distributed memory contexts

respectively. Section 8 presents some insights into betweeness cen-

trality and it’s role in increasing the computational efficiency. We

conclude the paper with a note on future work in Section 9.

2 RELATEDWORK
Urban traffic modeling has seen a recent surge of interest in the use

of graph analytics and machine learning methods. Reference [29]

provides an overview of many of these methods. In this section

we summarize the prior work related to both of these themes as

applied to road transportation networks.

The authors in [25] use graph analytics on networks with three

different weighting schemes to perform a statistical characteriza-

tion of the Beijing road network. Many prior publications consider

betweenness centrality [6] to be an important metric when applied

to road networks, as it is argued to be a direct predictor of impor-

tant links in urban transport. It has been shown that betweenness

centrality is highly correlated with the traffic flow count on a road

network [4, 12, 21], a natural result of including travel time as a

factor when selecting trip routes. In real-world scenarios, how-

ever, route choices are also influenced by time-of-day and other

socio-economic factors. Using these observations, the authors in

[22] define an augmented betweenness centrality measure where

shortest paths are weighted according to a traffic demand model

based on census tracts and traffic analysis zones. The authors show

that this new centrality measure correlates better with traffic flow

than other centrality measures. Similarly, in [3] the authors em-

ploy analytics in the form of novel graph centrality measures to

derive insights into the traffic flow patters in Singapore. Graph

models, along with heterogeneous data sources, were leveraged to

understand the urban traffic patterns in [19]. Finally, the authors in

[8] utilize a grid-based fabric and cellular automata for modeling

arterial traffic, resulting in gains in computational efficiency.

Many approaches make use of machine learning models and

optimization methods to model various aspects of urban traffic flow.

In [14], the authors leverage a deep-learning approach in the form

of a diffusion convolutional recurrent neural network (DCRNN)

to forecast short-term freeway traffic counts in the LA and San

Francisco Bay Area networks. The authors in [2] also propose a

deep-learning approach that brings together convolutional neural

networks and recurrent neural networks with long short-termmem-

ory (LSTM) units, utilizing their architecture for short-term traffic

count extrapolation at 349 locations on the Beijing road network. In

a set of articles [23, 31], the authors leverage data from Bluetooth

and GPS probe sensors for travel-time estimation and validation.

Coupled hidden Markov models (CHMM) were used in [9] to model

the evolution of traffic states, applied to a sparse taxi-fleet dataset

for the San Francisco Bay area road network. In a subsequent pub-

lication [10] leveraging the same dataset, the authors employ a

dynamic Bayesian network to learn arterial dynamics.

3 DATASETS
Our primary data sources for this work are from Uber Movement

[27] and the road networks from OpenStreetMaps [20] for the Los

Angeles metropolitan area. Uber has released a trove of aggregated

and anonymized data on travel-time and average-speed statistics

for a large number of cities around the world [27]. Uber Movement

datasets [27] provide anonymized, aggregated, and coarse-grained

O–D travel time statistics at the TAZ level for many metropolitan

areas around the world. TAZs are small geographical units into

which a given metropolitan area is divided, characterized by factors

such as the total population, type of population, and employment.

In this work, we focus on Uber’s travel time data, which includes

statistics for travel times between pairs of TAZs or census tracts

for each hour of the day and day of the week. Similar datasets are

also available through other sources (for specific cities) such as the

New York City taxi-cab data [18].

Table 1 lists some basic network properties of the full road net-

work, along with sub-networks formed with different radii around

the downtown areas for Los Angeles. Other than the number of

TAZs, most of the structural properties are similar across all of the

networks. The number of TAZs included increases with the size of

the graph for a given city network.

4 THE GRAPH-BASED FORWARD MODEL
In this section we describe a forward model for travel-time predic-

tion, and in the following section we show how the parameters of

this model can be estimated by means of an optimizer. Let P denote

a set of edges that forms a path from vertex 𝑖 to vertex 𝑗 in the road

network graph. The predicted travel time 𝑦𝑖 𝑗 between the vertices

𝑖 and 𝑗 can be computed as

𝑦𝑖 𝑗 =
∑
𝑘∈P

𝑡𝑘 = 𝑠𝑇 𝑡, (1)

where 𝑡𝑘 represents the expected travel time along edge𝑘 , the vector

𝑡 ∈ R𝑀
>0

represents the travel time along all𝑀 edges in the graph,

and the binary vector 𝑠 ∈ {0, 1}𝑀 encodes the edges in P. The

choice of optimal routing (P) between the origin and destination

vertices is a variable in the model. Routing is typically done with
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Area Vertices Edges TAZ min(Deg) max(Deg) avg(Deg)
LA_DT+1 3,239 7,138 25 2 12 2.2

LA_DT+2 9,879 22,756 79 2 12 2.3

LA_DT+3 16,906 40,929 159 2 12 2.4

LA_metro 166,640 441,681 2,203 2 14 2.5

Table 1: Structural properties of Los Angeles road networks of varying sizes: one, two and three miles radii of downtown (DT) and the full
networks.

special routing software such as the Open Source Routing Machine

[16]. However, in this work, we use shortest-path routes where

the edges are weighted by travel times [1, 15, 30]. Specifically, for

initialization, we use weights determined by free-flow travel times

𝑓 ∈ R𝑀
>0
, the time it takes to travel along a road segment free of

congestion, computed by dividing the length of the road segment

by the posted speed limit.

4.1 Training and testing tasks
Eq. 1 is based on O–D pairs in the road network graph. However, the

Uber Movement data is provided at the much coarser granularity of

TAZ O–D pairs, consisting of travel-time statistics computed over

all trips originating at a given TAZ and ending in another during

a particular hour of the day. Furthermore, not all TAZ pairs are

included in the data.

For a given hour of the day and geographic area, we first collect

all the TAZ O–D pair statistics available from Uber Movement. We

then choose a random 90-10 split of the available TAZ O–D pairs

for training and testing, respectively. For each of the TAZ O–D

pairs, we simulate trips by sampling vertices from the origin and

destination TAZs to form vertex O–D pairs, assigning trip times by

sampling from a log-normal distribution based on the geometric

mean and geometric standard deviation travel times given in the

Uber dataset.

After estimating edge travel times using our vertex-level training

data, testing is done at the TAZ level using the geometric mean

travel time for all vertex O–D pairs present in a given test TAZ

O–D pair. For example, suppose there are 𝑛𝑖 𝑗 simulated trips from

TAZ 𝑖 to TAZ 𝑗 . The estimated geometric mean travel time would

then be computed as

𝑔𝑖 𝑗 (𝑡) =
(𝑛𝑖 𝑗∏
𝑘=1

𝑠𝑇
𝑘
𝑡

) 1

𝑛𝑖 𝑗

, (2)

where vector 𝑠𝑘 ∈ {0, 1}𝑀 encodes the edges in the weighted

shortest-path between sampled vertex O–D pair 𝑘 . The vertex O–D

sampling and travel-time sampling are described in detail below.

4.1.1 Vertex sampling. For each iteration 𝑘 of our edge travel-time

estimation algorithm, we sample 𝑁 vertex O–D pairs each from

our training and test sets, letting the number of simulated trips for

each TAZ O–D pair be proportional to the size of the two TAZs.

Specifically, for each TAZ O–D pair (𝑖, 𝑗) in the current subset U𝑘

of the Uber dataset, we let 𝑚𝑖 𝑗 be the product of the number of

vertices in origin TAZ 𝑖 and destination TAZ 𝑗 , then we set the

number of simulated trips 𝑛𝑖 𝑗 = int

((
𝑚𝑖 𝑗∑

𝑘,ℓ∈U𝑘
𝑚𝑘ℓ

)
𝑁

)
.

We sample the 𝑛𝑖 𝑗 origin and destination vertices for a given

TAZ O–D pair uniformly from all vertices within their respective

TAZ. We note that this process selects the shortest-path edges with

a probability proportional to their local betweenness centrality,

which in turn correlates with the importance of the edge with

respect to traffic flow [4, 12, 21].

4.1.2 Biased Travel-time sampling. Sampling the trips and travel

times independently can result in loss of correlation between trip

lengths and sampled travel times. We therefore propose a simple

heuristic to retain these correlations. Let 𝑆 ∈ {0, 1}𝑀×𝑁
represent

the free-flow shortest-path matrix for our 𝑁 simulated trips. We

assign travel times 𝑦 ∈ R𝑁
>0

to trips based on the rank-ordering of

free-flow shortest-path travel times 𝑦𝑓 = 𝑆𝑇 𝑓 for all vertex O–D

pairs within a TAZ O–D pair, summarized in Algorithm 1 below.

Here 𝑓 ∈ R𝑀
>0

denotes the vector of free-flow travel times for each

of the𝑀 edges.

Algorithm 1 Travel-time sampling

Input: Free-flow shortest-paths matrix 𝑆𝑘
Output: Sampled travel times vector 𝑦𝑘

1: for all TAZ O–D pairs (𝑖, 𝑗) ∈ U𝑘 do
2: Sample 𝑛𝑖 𝑗 travel times 𝑦𝑠 from log-normal distribution

3: Get indices ℓ𝑠 and ℓ𝑓 of longest to shortest travel times for 𝑦𝑠 and

𝑦𝑡 , respectively

4: for𝑚 = 1, . . . , 𝑛𝑖 𝑗 do
5: Assign 𝑦𝑘 (ℓ𝑓 (𝑚)) = 𝑦𝑠 (ℓ𝑠 (𝑚))
6: end for
7: end for

In practice, our observations show that biased travel-time sam-

pling significantly improve the results of travel time estimation.

For example, Fig. 1 illustrates the difference between estimated

trip travel-time distributions with and without biased travel-time

sampling. For 2000 trip times sampled from the log-normal distri-

bution of a given TAZ O–D pair (left), the distribution of estimated

trip travel times deviates less from the target distribution (red line,

same across panels) when we bias the travel times assigned to each

vertex O–D pair (center) than when we do not (right).

5 THE OPTIMIZATION PROCESS
Our approach solves a series of constrained least-squares problems

to fit edge travel times to simulated trips (vertex O–D pairs, travel

times, and routes) with travel-time statistics consistent with the

Uber dataset. For each iteration 𝑘 , we sample 𝑁 vertex O–D pairs

with sampled travel times vector 𝑦𝑘 ∈ R𝑁
>0

and weighted shortest-

paths matrix 𝑆𝑘 ∈ {0, 1}𝑀×𝑁
. Our goal is to then estimate edge
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Figure 1: Illustrating the effect of biasing travel-time assignments for simulated trips for a TAZ O-D pair with 𝑛𝑖 𝑗 = 2000 trips. (Left) Distri-
bution of simulated travel times 𝑦𝑠 according to the log-normal distribution drawn in red. (Center) Distribution of estimated trip travel times
𝑆𝑇 𝑡 ≈ 𝑦 computed using biased sampling 𝑦 (ℓ𝑓 (𝑘)) = 𝑦𝑠 (ℓ𝑠 (𝑘)) . (Right) Distribution of estimated trip travel times 𝑆𝑇 𝑡 ≈ 𝑦 computed using
unbiased sampling 𝑦 = 𝑦𝑠 .

travel times vector 𝑡 ∈ R𝑀
>0

so that 𝑆𝑇
𝑘
𝑡 ≈ 𝑦𝑘 to satisfy our forward

model in Eq. 1. Thus we have a system of 𝑁 equations with 𝑀

unknowns where𝑀 is the number of road segments (or edges in the

graph). The estimates are then updated using a convex combination

of the previous estimates and the solution found by minimizing the

mean-squared error with constraints on the unknown coefficients,

illustrated by Eqs. 3-5 below.

𝑡 = argmin

𝛼𝑔𝑘 ≤𝑡 ≤𝛽ℎ𝑘




𝑆𝑇𝑘 𝑡 − 𝑦𝑘


2
2

(3)

𝑡𝑘+1 = (1 − 𝜆𝑘 )𝑡𝑘 + 𝜆𝑘𝑡 (4)

𝜆𝑘+1 = 𝜃𝑘𝜆𝑘 (5)

In our implementation, we initialize 𝑡0 = 𝑓 with the free-flow

estimates and let 𝜆0 = 1, we constrain the elements of the vector

𝑡 to be bounded below by 𝛼𝑔𝑘 = 0.8𝑓 and above by 𝛽ℎ𝑘 = 1.25𝑡𝑘 ,

and we update our weight 𝜆𝑘 using the constant 𝜃𝑘 = 0.9 for all 𝑘 .

Our weighted shortest-paths matrix 𝑆𝑘 is recomputed each iteration

using our current estimates 𝑡𝑘 as weights, and our constrained least-

squares sub-problems are solved using the lsq_linear function

from the well-known Python scientific computing library SciPy[28].

We run the optimizer until the estimates converge (measured by the

magnitude of the average change in the solution vector between

iterations, Eq. 6 with 𝛿 = 0.01), or we reach a maximum number

of iterations 𝑘max. This iterative scheme is similar to the one pro-

posed in [1] but with a choice of optimizer that favors scalability in

conjunction with a number of heuristics that improve convergence.

The workflow of our proposed travel-time estimation algorithm is

given in Algorithm 2.

1

𝑀
∥𝑡𝑘 − 𝑡𝑘−1∥2 ≤ 𝛿 (6)

We implement the workflow Algorithm 2 using Python (v3.7 ).
Fig. 2 shows the convergence of the travel-time error for LA Down-

town (both training and test sets) for the road network at 3am and

Algorithm 2 Travel-time Estimation

Input: Travel time statistics for TAZ O–D pairs; Road network

𝐺 = (𝑉 , 𝐸); Number of trips 𝑁

Output: Estimated travel times along edges 𝑡

1: Determine number of trips 𝑛𝑖 𝑗 for each TAZ O–D pair (Section 4.1.1)

2: Initialize edges with free-flow travel times 𝑡0 = 𝑓 and 𝑘 = 0

3: while Eq. 6 not satisfied do
4: Sample 𝑁 vertex O–D pairs

5: Compute shortest-path matrix 𝑆𝑘 using weights 𝑡𝑘
6: Compute 𝑦𝑘 using biased travel-time sampling (Algorithm 1)

7: Compute 𝑡𝑘+1 according to Eqs. 3-5

8: 𝑘 = 𝑘 + 1

9: end while

6pm, measured by

𝜖𝑘 =

√√
1

𝑁

∑
(𝑖, 𝑗) ∈U𝑘

𝑛𝑖 𝑗
(
log𝑔𝑖 𝑗 (𝑡𝑘 ) − log𝐺𝑖 𝑗

)
2

, (7)

where 𝑁 is the total number of trips in the training (test) data,

𝑛𝑖 𝑗 is the number of trips for TAZ O–D pair (𝑖, 𝑗) ∈ U𝑘 in the

training (test) subset, 𝑔𝑖 𝑗 (𝑡𝑘 ) is the current estimated geometric

mean travel time (Eq. 2), and 𝐺𝑖 𝑗 is the geometric mean travel-

time from the Uber Movement dataset. This RMSLE error metric

represents the relative mean-squared error in the logarithm of the

estimated geometric mean travel time and is known to be a better

metric for error estimation in high variance situations [1]. Further,

we note that, low values of RMSLE are equivalent to fractional

errors since exp(𝑥) ≈ (1 + 𝑥), for small values of x (say 𝑥 ≤ 0.25

and exp denotes the base of the natural logarithm.

6 SCALING TRANSEC FOR
METROPOLITAN-SIZED ROAD NETWORKS

In this section, we discuss strategies to scale TranSEC for travel

time estimation in large metropolitan area networks. Referring to

Table 1, the LAmetropolitan road network consists of roughly 166𝐾
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Figure 2: Travel-time estimation results for downtown LA for off-peak (3am) and peak traffic (6pm). Top: Convergence of travel time error
𝜖𝑘 . Bottom: Geometric mean travel times 𝑔𝑖 𝑗 calculated using free-flow edge weights and estimated edge weights compared to ground-truth
data𝐺𝑖 𝑗 from Uber.

vertices (intersections) and 441𝐾 edges (segments). The computa-

tional complexity of our proposed model is proportional to the

number of trips 𝑁 and the number of the edges 𝑀 , i.e., 𝑂 (𝑁𝑀).
The over-determined systems of equations that we setup, usually

sets the number of trips to be proportional to the number of un-

knowns (𝑁 ≈ 1.2𝑀). Thus the complexity of the solution process is

𝑂 (𝑀2). Due to the large problem size, for example, 441𝐾 edges in

the LA metropolitan road network and approximately 550𝐾 trips,

estimating travel times for metropolitan scale network becomes

prohibitively large with respect to compute time as well as memory

requirement. Our goal is to design a flexible scheme, simple enough

so that it can solve large problems on a single computer as well

as highly efficient that can run on multiple machines, if available,

in parallel in order to reduce the compute time. We achieve these

goals by employing a three step strategy as follows: i) partition

the problem into (potentially) independent sub-problems, ii) solve

each of these sub-problems independently and ii) finally, stitch the

sub-solutions in order to obtain final travel time estimates. We have

already discussed the second step in previous sections which is es-

sentially the Algorithm 2. We will discuss partitioning and stitching

in details in the following subsections.

6.1 Partitioning the problem
We partition the problem along the spatial dimensions, that is, given

a road network, we partition the network into mutually exclusive

geographic parts. There are two major challenges for this step.

First, we need to minimize the cut edges, i.e., the road segments

that straddle two neighboring partitions. The travel times on these

segments are not solved directly in the second step and so we infer

travel times on these edges in the last step while stitching the sub-

solutions. Therefore, minimizing the number of cut edges reduces

the inference error in the estimate. Second, we need to keep the size

of each partition balanced as much as possible in order to achieve

parallel efficiency. We use popular graph partitioning algorithm

METIS [13] which addresses both of these issues.

The computational speed up using spatial partitioning scheme

is linear in the number of the partitions on a single machine. If

we partition a problem into 𝑘 equally sized sub-problems. Each

sub-problem will take
1

𝑘2
of the total time since solver complexity

is quadratic. Therefore, the total time using partition scheme would

be 𝑘 × 1

𝑘2
of the original (un-partitioned) compute time, resulting a

𝑘 fold speed-up.
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6.2 Stitching the sub-solutions
The final step is to assemble all the sub-solutions and estimate

the travel time on the cut-edges. We employ a simple heuristic of

(approximate) speed continuity for this purpose. For each cut edge,

we find the preceding and the following road segments, in the same

geographical direction with their associated estimated travel times.

We compute the average speed from those travel times and use it

to compute how long it would take to travel along the cut road

segment on average.

Algorithm 3 Stitching the sub-solutions

Input: Sub-Solutions 𝑠𝑢𝑏_𝑟𝑒𝑠𝑖 ; Sub-problems 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 ,Road net-

work 𝐺 = (𝑉 , 𝐸);
Output: Estimated travel times along edges 𝑡

1: Determine the cut edges 𝐸𝑐 from the𝐺 and 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

2: for each cut edge, 𝑒𝑖 ∈ 𝐸𝑐 do
3: 𝑡𝑝𝑟𝑒𝑣 = travel time of previous road segment of 𝑒𝑖

4: 𝑡𝑛𝑒𝑥𝑡 = travel time of following road segment of 𝑒𝑖

5: 𝑠𝑝𝑟𝑒𝑣 = speed of road segment using 𝑡𝑝𝑟𝑒𝑣

6: 𝑠𝑛𝑒𝑥𝑡 = speed of road segment using 𝑡𝑛𝑒𝑥𝑡

7: 𝑠𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑠𝑝𝑟𝑒𝑣, 𝑠𝑛𝑒𝑥𝑡 )
8: 𝑡𝑖 = travel time using 𝑠𝑖

9: end for

Algorithm 4 describes the scalable TranSEC framework which

can estimate travel times of large metropolitan sized road network

with the three steps discussed in this section.

Algorithm 4 TranSEC

Input: Travel time statistics for TAZ O–D pairs; Road network

𝐺 = (𝑉 , 𝐸); Number of trips 𝑁 , Number of Partitions, 𝑃

Output: Estimated travel times along edges 𝑡

1: //Step 1: Partition the road network and send it to remote computers

2: 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑀𝐸𝑇𝐼𝑆 (𝐺, 𝑃 )
3:

4: //Step 2: Travel time estimation

5: 𝑡𝑒𝑚𝑝_𝑟𝑒𝑠 = ∅
6: for each 𝑝𝑖 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 do
7: Create subgraph,𝐺𝑝 = 𝑖𝑛𝑑𝑢𝑐𝑒 (𝐺, 𝑝𝑖 )
8: 𝑠𝑢𝑏_𝑟𝑒𝑠𝑖 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒 (𝐺𝑝 ,𝑂𝐷, 𝑁 ) ⊲ Algorithm 2

9: 𝑡𝑒𝑚𝑝_𝑟𝑒𝑠 = 𝑡𝑒𝑚𝑝_𝑟𝑒𝑠 ∪ 𝑠𝑢𝑏_𝑟𝑒𝑠𝑖

10: end for
11:

12: //Step 3: Collect sub-solutions and Stitching the results

13: 𝑟𝑒𝑠 = 𝑆𝑡𝑖𝑐ℎ (𝑡𝑒𝑚𝑝_𝑟𝑒𝑠,𝐺, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠) ⊲ Algorithm 3

14: return 𝑟𝑒𝑠

7 DISTRIBUTED MEMORY TRANSEC

In this section we discuss, the distributed memory algorithm of

the TranSEC in Algorithm 5. We implement the algorithm us-

ing Python (v3.7 ) along with Python specific MPI implementa-

tion, MPI4PY [5] for the inter node (computer) communication and

synchronization. The distributed memory TranSEC algorithm is

shown in Algorithm 5.

Without the loss of generality, we assume that the number of

available compute nodes is equal to the number of partitions so

Algorithm 5 Distributed Memory TranSEC

Input: Travel time statistics for TAZ O–D pairs; Road network

𝐺 = (𝑉 , 𝐸); Number of trips 𝑁 , Number of Partitions, 𝑃

Output: Estimated travel times along edges 𝑡

1:

2: comm=Create MPI_communicators for 𝑃 computers

3:

4: //Step 1: Partition the road network and send it to remote computers

5: if𝑚𝑦_𝑟𝑎𝑛𝑘 == 0 then
6: 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑀𝐸𝑇𝐼𝑆 (𝐺, 𝑃 )
7: for each 𝑝𝑖 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 do
8: 𝑀𝑃𝐼_𝑆𝑒𝑛𝑑 (𝑝𝑖 , 𝑖, 𝑐𝑜𝑚𝑚)
9: end for
10: else
11: 𝑀𝑃𝐼_𝑅𝑒𝑐𝑣 (𝑝𝑖 , 0, 𝑐𝑜𝑚𝑚)
12: end if
13:

14: //Step 2: Travel time estimation

15: Create subgraph,𝐺𝑝 = 𝑖𝑛𝑑𝑢𝑐𝑒 (𝐺, 𝑝𝑖 )
16: 𝑠𝑢𝑏_𝑟𝑒𝑠𝑖 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒 (𝐺𝑝 ,𝑂𝐷, 𝑁 ) ⊲ Algorithm 2

17:

18: //Step 3: Collect sub-solutions and Stitching the results

19: if𝑚𝑦_𝑟𝑎𝑛𝑘 == 0 then
20: for each computer, 𝑖 do
21: 𝑀𝑃𝐼_𝑅𝑒𝑐𝑣 (𝑠𝑢𝑏_𝑟𝑒𝑠𝑖 , 𝑖, 𝑐𝑜𝑚𝑚)
22: 𝑡𝑒𝑚𝑝_𝑟𝑒𝑠 = 𝑡𝑒𝑚𝑝_𝑟𝑒𝑠 ∪ 𝑠𝑢𝑏_𝑟𝑒𝑠𝑖

23: end for
24: 𝑟𝑒𝑠 = 𝑆𝑡𝑖𝑡𝑐ℎ (𝑡𝑒𝑚𝑃_𝑟𝑒𝑠,𝐺, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠) ⊲ Algorithm 3

25: else
26: 𝑀𝑃𝐼_𝑆𝑒𝑛𝑑 (𝑠𝑢𝑏_𝑟𝑒𝑠𝑖 , 0, 𝑐𝑜𝑚𝑚)
27: end if
28:

29: return 𝑟𝑒𝑠

that each node is responsible for estimating travel times for exactly

one partition. If the number of compute nodes is less than that

of partitions, then some compute nodes will be assigned to more

than one partition which in turn can be solved in serial using

Algorithm 4. Algorithm 5 starts by creating standard MPI library

communicators for managing communication and synchronization

among the computers. The master node (rank 0) then partitions

the network and sends partition information to the corresponding

client nodes (line 4-8). After receiving the partition information

(line 10) from the master node, each node (including the master)

computes the travel times for the road segments independently for

the assigned partition (line 14-15).When the estimation is over, each

client sends the result back to the master (line 25). Upon receiving

all the sub-solutions, the master node stitches the sub-solutions

and obtains the final travel time estimate (line 18-24).

It is evident from the discussion that increasing the number of

partitions (as well as compute nodes) speeds up the computation

process. However, more partitions mean more cut edges which may

have negative impact on the solution quality. We experimented

with this trade-off and concluded that using 64 partition for LA

metropolitan area gives us a good quality solutions with efficient

speed up in computation. For the LA metro area network, with

167𝑘 intersections and 441𝑘 road segments, the serial run with 64

partitions takes 32 hours and 27 mins. The distributed memory flow
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is completed in about 37 mins using 64 computing nodes giving us

52× speedup and a 0.82 parallel efficiency.

The parallel efficiency is defined as the ratio of speed up over the

number of compute nodes. The parallel efficiency is 1 means the

algorithm has perfect linear strong scaling performance. However

due to the overhead of inter node communication and synchro-

nization, we achieve parallel efficiency 0.82 which is a reasonably

efficient scaling performance by our proposed algorithm. We show

that the distributed TranSEC scales up to 64 compute node each

with 20 Intel E5-2680, 2.80GHz cores (i.e., 1280 cores in total) with

52× speed up for LA metropolitan area problem.

We further note that, the distributed algorithm allows us to com-

pute the solutions to the independent partial problems in parallel.

In the absence of a cluster or a supercomputer, the independent

problems can be solved serially and the stitching algorithm applied

after all the partial solutions are obtained.

Next, we discuss the solution quality in Figure 3 for LA metro-

politan area from 2 PM to 7 PM in order to see how traffic pattern

changes from off peak to peak and back to off peak traffic. We plot

the excess travel time (estimated (t) - free flow (f)) as a percent of

free flow travel time in the LA metropolitan area. It captures how

slow a vehicle moving w.r.t. the free flow (no congestion) scenario.

We consider a road segment is severely congested if the excess

travel time is equal to or above 80% over the free flow, i.e., roughly

driving 17 mph in a 30 mph zone. We observe that from 2 PM

onward the congestion increases steadily until 5 PM then eases

out gradually at 7 PM which aligns with real world observation.

The figure also identifies known hotspots such as LA downtown,

Universal Studio and Pasadena areas as well.

8 GRAPH PSEUDO-SPARSIFICATION
In this section, we discuss strategies to further speed up the com-

putation while also assisting in the regularization of the system

of equations. Ensuring accuracy of the travel time estimation on

heavily utilized arterial and highway segments is very important.

This means that we can potentially reduce the number of unknowns

by removing the least-utilized segments from the system. These

are typically links that have very low edge-betweenness values.

However, a straight-forward strategy to drop the low betweenness

edges will not work in practice. This can lead to connectivity issues

as well as skew the routing and hence the travel time estimation.

For example, consider two paths between vertex 𝑢 and 𝑣 : the

shortest route through intermediate vertices 𝑠 and 𝑡 , and an alter-

native, but longer, route through vertices 𝑥 and 𝑦. If a sparsification

algorithm removes the road segment between 𝑠 and 𝑡 based on some

metric (e.g., low edge betweenness centrality), our model would

incorrectly estimate the travel time from 𝑢 to 𝑣 using the available

road segment through 𝑥 and 𝑦.

In order to address the above issues, our approach is to pseudo-

sparsify the underlying road network. Rather than remove edges

from the graph, we sort road segments into two sets based on their

significance with respect to traffic flow (e.g., betweenness central-

ity). We then estimate the travel-time along the edges with the top

𝑝% significance, setting the travel times along the remaining edges

to the free-flow travel times given that low betweenness typically

translates to less traffic volume as well. In our implementation, we

sort edges based on their betweenness centrality, computed using

shortest-paths weighted by free-flow travel times described in Al-

gorithm. For instance, if 𝑖 are the indices of the edges with the top

𝑝% betweenness and 𝑗 are indices of the remaining edges, we solve

a modified version of Eqs. 3-4 each iteration:

𝑡 = argmin

𝛼𝑔𝑘 (𝑖) ≤𝑡 ≤𝛽ℎ𝑘 (𝑖)




𝑆𝑘 (𝑖)𝑇 𝑡 + 𝑆𝑘 ( 𝑗)𝑇 𝑓 ( 𝑗) − 𝑦𝑘


2
2

(8)

𝑡𝑘+1 (𝑖) = (1 − 𝜆𝑘 )𝑡𝑘 (𝑖) + 𝜆𝑘𝑡, 𝑡𝑘+1 ( 𝑗) = 𝑓 ( 𝑗) (9)

Note that this approach can provide for modest speed-ups in the

computation flow. Choosing the top 70% links leads to a 2𝑋 speed-

up. However, a more important side-effect of this approach is to

remove the unknowns that appear in a very few equations because

of their low betweenness. Note that the action of sampling trips

and the associated shortest-paths is very similar to estimating be-

tweenness via a sampling approach [7]. This will lead to a better

least-squares estimate in a manner similar to setting the coefficients

of low-importance variables in Lasso regression[26] to zero.

We test our pseudo-sparsification approach using different values

of 𝑝 (Fig. 4). In Fig. 4 (left), we first run our algorithm on the full

graph (i.e., 𝑝 = 100%), and plot the relative difference between our

estimated travel times and the initial free-flow travel times |𝑡 − 𝑓 |/𝑓
versus the percentile of the edges sorted by betweenness centrality.

We observe that roughly 15% of lowest betweenness edges retain

their free-flow travel time as the final estimate, suggesting that we

can set these edges to their free-flow travel times to reduce the

number of unknowns.

Of course, drivers rarely maintain the exact speed limit. To ac-

count for this uncertainty in free-flow travel times, we sort the

edges into bins based on their betweenness percentiles and plot

the fraction of edges within each bin that have a relative difference

within a factor of 𝑞% of their free-flow travel times (Fig. 4, right).

We observe that the high betweenness edges are less likely to have

an estimated travel time close to their free-flow times irrespective

of the level of uncertainty 𝑞. Therefore, we can pseudo-sparsify the

graph to different extents depending upon the level of uncertainty

that can be tolerated.

9 CONCLUSIONS AND FUTUREWORK
In this work, we consider the problem of estimation of travel times at

the street-level in a metropolitan-sized road network. Our starting

point for the data is the road network and incomplete TAZ-TAZ

travel time aggregate statistics. The solution process is aided by

sampling trips from the training data and solving for the street-level

travel times through an iterative process that uses constrained least

squares optimization at each step.

We further present a scaling strategy based on graph-partitioning

and implement the same on distributed memory machines to en-

able solving problem sizes as large as the Los Angeles metropoli-

tan area network with 441𝐾 road segments in 37 minutes using a

64-node, 1280-core supercomputer. Finally, we present a pseudo-

sparsification strategy that can lead to additional speedups while

assisting regularizing the system of equations.

Our future work is focused on better stitching strategies, uncer-

tainty quantification and further validation of the methodology on

other geographical areas.
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Figure 3: Estimated excess travel time (𝑡 − 𝑓 ) as a percent of free-flow travel time 𝑓 in LA metropolitan area.

Figure 4: Relative difference ( |𝑡 − 𝑓 |/𝑓 ) between estimated travel time 𝑡 and free-flow travel time 𝑓 by percentile of betweenness for peak
downtown LA traffic (left) and fraction of estimated edge travel times that are within 𝑞% of free-flow ( |𝑡 − 𝑓 |/𝑓 ≤ 𝑞%), where edges are binned
by percentile (right). Edge betweenness centrality is calculated using shortest paths weighted by free-flow travel time.
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