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ABSTRACT
The difficulty of fuel prediction for bus transit systems is an impor-
tant research problem for both academia and industry, and an accu-
rate predictive model has several applications e.g. urban planning,
emission reduction, anomaly detection, smart city development, etc.
However, this problem is complicated because of the relationships
between multiple driving factors such as weather, spatial feature,
traffic, etc. Predicting energy use of specific buses needs to depend
on their sequential consumption nature and external driving fac-
tors. In this paper, we propose a fuel consumption prediction model
based on recurrent neural network called FuelPred. Our model
easily captures the sequential nature of fuel consumption due to
the effectiveness of a recurrent neural network. FuelPred integrates
various features of modeling prediction. Our extensive experiment
shows that (i) FuelPred outperforms several baselines; and (ii) these
features are necessary to well predict the fuel consumption.
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1 INTRODUCTION
Vehicle emission has been a problem since World War II and has
been researched for 70 years by transportation experts. Despite
progress, emissions still cause a significant portion of air pollu-
tion.The U.S Environmental Protection Agency (EPA) estimates
that the largest contributor of U.S. greenhouse gas emission comes
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from transportation, which is approximately 29% of total U.S. green-
house gas emissions. Reducing vehicle emissions is a crucial task
toward a greener earth. Emission reduction is not only valuable for
environment, it is also economically beneficial. The EPA reported
that every $1 spent on emission reduction saves $9 from healthcare,
productivity, consumer saving, etc. For these reasons, public transit
and, specifically, buses, [24] are an essential are of focus to solve the
problem. We can reduce up to 61.3 million tones of CO2 emission
when the ridership increases 25% in 2050 [9].

Due to public buses’ crucial role in emission reduction, there is a
need to predict the fuel consumption of buses in real time. Solving
this problem can bring many benefits to many people; especially
public transit agencies. With an accurate prediction model, pub-
lic transit agencies can have a precise plan to replace buses that
contribute to pollution with environmentally friendly buses. Such
detailed plan can minimize the budget and maximize the efficiency
to create greener environment. Second, bus transit systems usually
cover large part of its city, so buses can be used as dynamic sensors
to detect any anomalous activities. For example, we can use bus
data to identify traffic jams and road damages.

While there are many research works on the energy use of buses,
it remains to be a challenging problem. Public transit has been evolv-
ing to multimodel system. For example, the city of Chattanooga, TN
offers a service named Car-a-van to serve the disabled in addition
to existing public transit. Secondly, the energy use of public transit
and buses is very complicated. Public transit is only more energy
efficient than individual vehicles in highly-populated urban areas
such as New York City, San Francisco–Oakland, Portland, Honolulu
while in sparser areas, the opposite is true [26]. Thirdly, classical
research works use data from surveys or simulations. This type
of data is useful for doing research on a macro-level, but the lack
of granular data leads to limiting the findings further. Fortunately,
with the rise of technology, we now are able to collect fuel consump-
tion data in a nearly real-time manner. Modern techniques such as
deep learning and neural networks help us to oversee complicated
issues such as the energy use of buses. There are not many works
that take advantage of the new wave of data and techniques to
study the fuel consumption problem.

Recently, deep learning has become a mainstream technique
for researchers because of its effectiveness in unsupervised and
supervised tasks. Natural language processing and speech recogni-
tion are well-known examples. Despite their high computational
cost, these techniques yield high accuracy in prediction and are
more capable of handling the non-linear nature of sequential data.
Given fuel consumption prediction challenges, it is a great chance
to investigate a deep learning or recurrent neural network method
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to generate better prediction results and incorporate more features
relevant to fuel consumption behaviors.

Research Objectives. In this paper, we devote our efforts and
resources to study the problem of fuel consumption of buses espe-
cially, ones using diesel. We also propose a neural network model to
predict the energy use of buses. The main finding and contributions
of this work can be summarized as follows:

• We will study the high resolution data of an entire city i.e.
Chattanooga. Several features such as weather, temporal or
spatial properties have been studied to illustrate their impact
on fuel consumption of buses. With our analysis, we can
understand the importance of these features as they relate to
fuel consumption. To the best of our knowledge, our work is
the first providing an extensive empirical analysis of these
features to the energy use of buses.

• Utilizing Long-Short Term Memory (LSTM), we will inte-
grate these above features into the fuel prediction model.
The result is our proposed model named FuelPred. Our so-
lution minimizes the number of assumptions and leverages
the representation power of neural networks [17] to make
its prediction.

• Through extensive experiments, we will show the impor-
tance of the above features to predict the fuel consumption
of buses. The experiments are conducted upon the entire bus
transportation system of Chattanooga. The results clearly
illustrate the outperformance of our proposed method over
several baselines. Moreover, many aspects of our model are
also studies in our experiments.

Paper Outline. The rest of our paper is organized by the follow-
ing structure. Section 2 provides a literature survey of some previous
works that are related to our research while Section 3 shows the
data collection and analysis processes. The two Sections 4 and 5
present the prediction model and experiment result, respectively.
Finally, Section 6 concludes our findings and also discusses some
future directions.

2 RELATEDWORKS
The previous related works can be divided into two categories:
machine learning methods and its applications to solve problems
in public transportation.

2.1 Machine learning methods
Machine learning is a branch of artificial intelligence that offers a
system able to find statistical patterns from data and improve its
performance without being explicitly defined. These methods have
been successfully applied to solve many problems such as computer
vision and natural language processing [6]. Recently, neural net-
work, with its ability to approximate any non-linear function, [17]
has become a mainstream technique for machine learning research.
To model sequential data, Long-Short term memory (LSTM) [12]
models prove it is superior to other classical methods in various
applications. The method is armed with other state-of-the-art tech-
niques such as attention mechanism [3] or convolutional neural
network [27] to improve its performances.

2.2 Machine Learning for public transportation
research

Due to the recent breakthrough of machine learning and neural
network in various fields, the research community uses them as
new techniques to analyze public transportation. Moreover, with
the rise of internet of thing devices, various types of data from
transportation can be easily crawled so it accelerates the adoption
of machine learning in the transportation research community. The
community has a wide range of research topics in this field.

2.2.1 Traffic Analysis. Chiang et. al. [7] used the information of
public transportation to predict congestion cascades in urban areas.
The authors [16] extended the work further and deployed it into
web dashboard for monitoring traffic congestion in Singapore. In-
stead of using a Bayesian model like Chiang et. al., Basak et. al. [4]
considered the sequential nature of public transportation data by
using LSTM [12] to predict the traffic congestion. Hoang et. al. [11]
explored social network information to understand events related
to public transportation such as waiting and missing buses. Specifi-
cally, their work employed natural language processing techniques
to analyze public tweets of Twitter users in Singapore. Now, their
model helps them to study the current status of Singapore public
transit. Arabghalizi and Labrinidis [1] analyzed the public transit in
city of Pittsburgh in Pennsylvania to build a framework to predict
how full the bus is.

2.2.2 Speed Optimization. Stovall et. al. [22] proposed a framework
for processing urban informatics. In their system, they applied
computer vision technique such as YOLO [21] to track and count
vehicles in urban environment. This method can be extended to
predict the speed of vehicle. Sun et. al. [23] built an attention neural
network [3] upon an LSTM model to predict the speed of buses
in Singapore. In their model, they considered external features
such as weather, temporal information to increase the prediction
performance. Wei et. al. [25] proposed deep reinforcement learning-
based method IntelliLight to control traffic lights in an urban area.
Through their extensive experiments using real data, their method
can increase the speed of public transit.

2.2.3 Energy Consumption. This topic has strong relation with
emission study which has been received a lot of attention from
transportation researchers. Vincent and Jerram [24] studied several
scenarios in a medium-sized US city and found that using bus rapid
transit was the preferred choice since it offered lowest CO2 emis-
sion per passenger. The work used some assumptions to estimate
the CO2 emission because of technology limitations. Without gran-
ular measurements, we cannot provide accurate solutions. Ercan et.
al. [9] used a simulation to find that if public transportation rider-
ship increases by 9%, CO2 emissions can be reduced up to 766,000
tonnes annually by 2050. Ayman et. al. [2] is one of the most recent
work that uses machine learning to predict the fuel consumption
of a bus fleet. They employed the power of linear regression, de-
cision tree, and multi-layer perceptron with various features for
their prediction. However, the drawback of this work is that they
did not incorporate the sequential nature of bus movement into
their prediction model. This limits their accuracy in predicting fuel
consumption. The main difference between this work and ours is
that the authors focused on predicting energy usage in route-level,
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while we target the individual vehicle which is more granular and
harder to handle.

3 DATASET & EMPIRICAL ANALYSIS
In this section, we present our data crawling process as well as
provide the overview of our dataset. Later, we show the analysis of
multiple features affecting fuel consumption of a public transporta-
tion fleet.

3.1 Dataset
We collect data from sensor devices deployed on all buses in Chat-
tanooga, Tennessee. The API is provided by the bus management
agency of the city i.e. Chattanooga Area Regional Transportation
Authority (CARTA). For nearly 50 years, CARTA’s mission is to
provide a reliable multimodal transit system for people of the City
of Chattanooga and its surrounding areas. Each year, CARTA serves
more than 3.1 million trips.

The range of collected data is 35 days from Feb 6th to March
11th 2020. We do not collect more recent data because COVID-19
changes the behaviors of bus riders. The entire bus fleet contains 28
vehicles and data points are sampled every 10 seconds. The longest
sequence contains 14140 data points. Figure 1 provides an example
of a particular bus trajectory and its fuel consumption in Chat-
tanooga for one day. Each data point is represented as a tuple of
timestamp, location, fuel consumption. We also apply some heuris-
tic methods to filter noise in the dataset. For example, sequences
shorter than three are classified as noise and we filter them out
from our dataset. The final total number of sequences is 786.

3.2 Empirical Analysis
From the collected data, we conduct several empirical studies to
analyze the fuel consumption of bus transportation under different
features: (i) weather, (ii) temporal information, (iii) spatial feature
and (iv) individual bus characteristic.

Weather feature: The effect of weather on energy consumption
has been studied in Ayman et. al. [2]. However, in their work, the
empirical analysis of weather information does not provide the
reasons of using this data to study energy consumption. Moreover,
we argue that data such as temperature and wind speed are difficult
to utilize since their degree of change is hard to interpret.

Our original dataset does not containweather information. There-
fore, we gathered this information using the Python API from Dark-
Sky which compiles data from multiple different stations. From
DarkSky, Chattanooga is divided into a grid and the weather infor-
mation of each grid is reported. For our analysis, each weather data
record is a tuple of timestamp, grid center location and weather
condition e.g. snow, rain, foggy; we ignore other information such
as temperature, humidity, wind speed.

To find weather conditions for a particular fuel data point, we
follow the steps below:

• Firstly, we calculate the distance between the fuel data point
to every grid center location. We select the corresponding
grid for that data point as the closest grid.

• Secondly, we find the weather record belonging to the cor-
responding grid with the closest timestamp the fuel data
point. The weather condition of area is assigned to the fuel

data point. In this step, we assume the weather condition is
unique for all points in each grid.

• Finally, to ensure the correctness of our process, we ran-
domly sample a subset of data points and manually examine
the weather information.

There are six weather conditions reported by DarkSky: rain,
cloudy, foggy, snow, clear and normal. For each weather condition,
we calculate the fuel consumption of the buses and use box plots
to display the result in Figure 2. From the figure, we observe that
under different weather conditions, the fuel consumption of bus
transportation is affected. For example, under snow conditions, the
fuel consumption is lower than other conditions. We argue that
the reasons are (i) snow is severe weather in southern states like
Tennessee so people avoid driving and going outside, it leads to
less traffic then buses can keep stable speed during operation; (ii)
due to the skewness of our dataset, we observe fewer data points
of snow condition than others so it can favor the fuel consumption
in this condition.

Since fuel consumption is different in various weather conditions,
we need to use weather as a feature for our prediction.

Temporal feature: The temporal feature plays a crucial role
in urban activities [28]. It usually takes more energy to travel in
rush hours than normal hours. For this reason, we use real data to
further explore its effect on the problem of energy consumption of
public transit.

For each day of week, we calculate the average fuel consumption
of all buses for each hour. Figure 3 shows the fuel usage of bus
transportation according to the day of week. From the figure, we
first observe that different days have different patterns. For example,
weekends (i.e. Sunday and Saturday) are more stable than other
weekdays. Secondly, at the start of day, fuel consumption is signifi-
cantly larger. We argue that buses need to consume more energy
to warm up their engines at the beginning of the day. Additionally,
the demand for public transit in the morning is higher than other
parts of the day.

Spatial feature: The effect of spatial information has significant
impact on human activities [8, 14] but its importance for energy
consumption has limited studies in previous works. Intuitively,
some locations make vehicles consume more than others. There
are multiple reason behind this phenomenon. For example, vehicles
digest more in urban areas than rural areas, or going uphill requires
more energy than usual. Due to this complex scenario, we simplify
our analysis to a two dimensional map and display the average fuel
consumption across the map of Chattanooga. First, we divide the
city by using the grid of 𝑘 by 𝑘 . In this analysis, we use 𝑘 = 100.
Second, we calculate the average fuel usage in each cell of the grid.
Finally, we normalize the average fuel usage into the range (0, 1)
by softmax function [10]. The normalization helps to increase the
contrast of our display.

Figure 4 shows the normalized average fuel consumption in
Chattanooga. The darker the color, the more fuel the bus fleet
needs to consume in this grid cell. From the figure, we observe
that the fuel consumption of buses is not evenly distributed. In
some places such as downtown (middle of the figure) and shopping
malls (east of the city), buses consume more fuel than other places.
The reason is that the ridership demand in these areas is higher
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Figure 1: The fuel consumption (left) and the corresponding trajectory (right) of a particular bus route in Chattanooga, TN in
February 6th 2020
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Figure 2: Box plots of fuel consumption of bus vehicles in
Chattanooga under different weather conditions.

so buses use more energy to serve its riders. Traffic jams in these
areas are more common, which contributes to the fuel usage of
bus transportation. For different values of 𝑘 , we still obtain the
same pattern. It indicates that the spatial information of the bus is
essential to model the fuel usage of bus system.

Individual bus characteristic: For each bus, we aggregate its
energy consumption over hours of day. Then, we calculate the pair
t-test for every pair of vehicles. Particularly, the null hypothesis is
that the energy usage of a pair of vehicles are statistically similar
while the alternative hypothesis considers that both vehicles have a
different energy pattern. The p-values of 80% pairs of vehicles are
less than 0.05 while the p-values of the remaining pairs are from
0.05 to 0.1. Therefore, we conclude that most of vehicles have their
own pattern of consuming energy.
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Figure 3: Fuel consumption of bus vehicles in Chattanooga
under different time of days.

The above phenomenon can be explained that despite being man-
ufactured by machines, each bus still has its own characteristics
which distinguish itself from others. Moreover, these characteristics
can profoundly affect its energy use. For example, each manufac-
turer has its production procedure so its products are distinct from
others. The maintenance also influences the fuel consumption of
buses. Due to the complexity of bus characteristics, it is impos-
sible to handpick and model each characteristic individually. For
this reason, we use a latent vector to capture all characteristics
of a particular bus e.g. made year, manufacturer and such vector
is learned automatically by neural network (see later sections for
more details).
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Conclusion: The above analysis shows that fuel consumption
is a complex problem since it is under the influence of multiple
features especially weather, spatial, temporal features and individ-
ual bus characteristic. Hence, there is a need to incorporate these
features to our fuel consumption prediction model for gaining more
accurate predictive performance.

4 MODEL DESCRIPTION
In this section, we formally present the problem that we aim to study.
Then, we will briefly introduce LSTM and describe our FuelPred
model which integrates features to enhance the capacity of LSTM
to solve the stated problem. Finally, we discuss the loss function for
our model and parameter learning process.

4.1 Problem Statement
The input is the sequence of fuel consumption 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑡−1)
where 𝑥𝑖 ∈ R; 𝑖 ∈ [1, 𝑡 − 1] and for fuel consumption data point
𝑥𝑡−1, we also have the associated attributes {𝑦𝑡−1

1 , 𝑦𝑡−1
2 , ..., 𝑦𝑡−1

𝑁
}

where 𝑁 is the number of feature. The objective is to predict the
fuel consumption at time 𝑡 by learning a nonlinear relation from
the input and the corresponding associated attributes:

𝑥𝑡 = 𝐹 (𝑥1, ..., 𝑥𝑡−1, 𝑦
𝑡−1
1 , 𝑦𝑡−1

2 , ..., 𝑦𝑡−1
𝑁 ) (1)

where 𝐹 is the non-linear relation that we would like to learn. In
this work, we do not consider the historical sequence of attributes
for simplicity.

4.2 Preliminary
We use Long-Short-Term Memory (LSTM) [12] method to handle
the fuel consumption sequences. The method learns to update the
hidden state by using the input and the previous hidden state. The
formula below can be used to capture the update process

ℎ𝑡 = 𝑔(ℎ𝑡−1, 𝑥𝑡 ) (2)
where ℎ𝑡 and ℎ𝑡−1 denote the hidden states of LSTM at time 𝑡 and
𝑡 − 1 respectively. 𝑥𝑡 ∈ 𝑋 is the element of sequence 𝑋 at time 𝑡 .
The goal of hidden state ℎ𝑡 is to “memorize" latent characteristics

of the input sequence up to timestep 𝑡 . In traditional RNN, function
𝑔 has a very simple structure such as tanh function. Such simple
structures struggle to handle long-term dependencies [5] because of
gradient vanish, non-robustness to input noise. To overcome these
problems above, LSTM introduces four types of gates and memory
cell whose interactions are described by the following equations

𝑓𝑡 = 𝜎 (Θ𝑓 𝑥𝑡 + Ω𝑓 ℎ𝑡−1 + 𝑏 𝑓 )
𝑛𝑡 = 𝜎 (Θ𝑛𝑥𝑡 + Ω𝑛ℎ𝑡−1 + 𝑏𝑛)
𝑜𝑡 = 𝜎 (Θ𝑜𝑥𝑡 + Ω𝑜ℎ𝑡−1 + 𝑏𝑜 )
𝑐𝑡 = 𝑓𝑡 ◦ 𝑐𝑡−1 + 𝑛𝑡 ◦ 𝜎 ′(Θ𝑐𝑥𝑡 + Ω𝑐ℎ𝑡−1 + 𝑏𝑐 )

𝑔(ℎ𝑡−1, 𝑥𝑡 ) = 𝑜𝑡 ◦ 𝜎 ′(𝑐𝑡 )

(3)

where 𝑓𝑗 ,𝑛 𝑗 and𝑜 𝑗 are corresponding to forget, input, and output
gates’ activation vectors respectively; 𝑐 𝑗 is the cell state vector; Θ,
Ω, and 𝑏 are weight and bias parameter; 𝜎 (·) is sigmoid function;
and 𝜎 ′(·) is hyperbolic tangent function [18]. Notation ◦ denotes
Hadamard product.

To predict the fuel consumption at time 𝑡 + 1, we use hidden
vector ℎ𝑡 as input for neural network.

𝑥𝑡+1 = 𝐹 (ℎ𝑡 |\ ) (4)

where 𝐹 denotes the neural network structure and \ denotes the
set of parameters of 𝐹 .

4.3 FuelPred Model
The vanilla LSTM in previous section is not able to handle support-
ing features associated to data point 𝑥𝑡 . In this section, we propose
a model named FuelPred which is able to incorporate the features
into a LSTM structure.

Suppose that we have 𝑁 features, each feature 𝑛 is represented
by a 𝑁𝑛 × 𝑠𝑛 matrix 𝑋𝑛 where 𝑁𝑛 denotes the number of attributes
and 𝑠𝑛 is the size of embedding vector of feature 𝑛 respectively.
Note that for feature 𝑛, its size of embedding vector 𝑠𝑛 can be
different from 𝑠𝑛′ the one of feature 𝑛′ where 𝑛 ≠ 𝑛′. To retrieve
the representative vector of attribute 𝑎𝑛 , we can compute 𝑋𝑇

𝑛 𝑦𝑛
where 𝑦𝑛 is one-hot vector corresponding to attribute 𝑎𝑛 .

In the FuelPred model, instead of using raw 𝑥𝑡 as input for
LSTM, we combine 𝑥𝑡 with its associated attributes of features.
Recall that for input 𝑥𝑡 , we have the list of its associated attributes
{𝑦𝑡1, 𝑦

𝑡
2, ..., 𝑦

𝑡
𝑁
} of 𝑁 features. Each attribute is encoded by one-hot

vector so from the list of attributes, we derive the list of embedding
vector by multiplying each one-hot attribute vector to its corre-
sponding feature matrix i.e. 𝑋𝑇

𝑖
𝑦𝑡
𝑖
where 𝑖 ∈ [1, 𝑁 ]. Then, we con-

catenate all embedding vectors of the attributes as one supportive
vector i.e. 𝑦𝑡 = [𝑋𝑇

1 𝑦
𝑡
1;𝑋𝑇

2 𝑦
𝑡
2; ...;𝑋𝑇

𝑁
𝑦𝑡
𝑁
]. The order of concatena-

tion is not important since neural network is able to handle that
case; however, for consistency, the order in our concatenation step
above is similar to the order of features. Finally, the supporting
vector 𝑦𝑡 is concatenated to the raw input 𝑥𝑡 to create a new input
vector 𝑥𝑡 = [𝑥𝑡 ;𝑦𝑡 ]. We then apply the new input vector to LSTM
framework. For this reason, Equation 2 changes to

ℎ̄𝑡 = 𝑔(ℎ̄𝑡−1, 𝑥𝑡 ) (5)
The concatenation operator is used in this step because it has

some positive effects as below



UrbComp ’20, August 24th, 2020, Virtual Conference Thanh-Nam Doan, Le Tuan Phan, Mina Sartipi

• It does not assume the length of embedding vector is equal
to the length of hidden vector. This relaxation helps us to use
the suitable size of embedding vector which can be different
from the length of hidden vector. For this reason, the model
can achieve better performance.

• The concatenation does not assume any interaction between
embedding and hidden vectors and the interaction is learned
through neural network architecture. It is different from
a matrix factorization method which assumes that the k𝑡ℎ
element of user latent vector must interact with the corre-
sponding element of item latent factor.

• Moreover, the concatenation operator can be extended to un-
limited number of features in theory. Classical collaborative
filtering methods model the direct interaction of two consid-
ering features and it is difficult for the mechanism to handle
more than that number of features. With concatenation, we
can ease this limitation.

We can utilize LSTM framework (Equation 3) for function 𝑔 and
use ℎ̄𝑡 for prediction (Equation 4).

4.4 Loss Function & Parameter Learning
We compare the target value and the predicted energy use by using
mean square error as loss function [10]. To avoid overfitting, we
employ a Dropout regularization technique. Specifically, Dropout
discards some components as well as their corresponding structures
with probability 𝑝 at each step of training process. The idea of
the technique is to restrict the neural network structure from co-
adapting too much.

For parameter learning, we useAdamoptimization algorithm [15]
to find the optimal values of model parameters that are associated
to minimal value of the loss function.

5 EXPERIMENT
In this section, we show the experiment settings and the fuel predic-
tion performance of our FuelPred model and its variants compared
with some baselines. We also discuss the prediction performance
under different settings.

5.1 Experiment Setup
Proposed Models: Below is the list of our proposed models which
are evaluated in the experiments:

• FuelPred (T): FuelPred model with temporal feature. There
are seven days per week and 24 hours per day so the number
of attributes of temporal feature is 168.

• FuelPred (W): FuelPred model with weather feature. We
consider six weather attributes: rain, cloudy, foggy, snow,
clear and normal. Each weather attribute is associated to an
embedding vector.

• FuelPred (S): FuelPred model with spatial feature. There are
3168 streets in Chattanooga and each street is considered an
attribute of spatial feature. For each fuel data point, we use
its location to find the corresponding street.

• FuelPred (B): FuelPred model with individual bus character-
istic. The number of attribute of bus feature is 28 which is
equal to the number of buses in the city fleet. Each bus has
an embedding vector that captures its latent characteristics.

• FuelPred (W/S): FuelPred model with weather and spatial
features. We combine these two features together because
they can be classified as external conditions that affect fuel
consumption behavior of buses.

Baselines: To demonstrate the performance of our methods, we
compare them with the below baselines:

• Global Mean: We use the mean of all training data points for
predicting values in test set.

• Bus mean: The prediction on the testset is done according
to the average fuel consumption of the corresponding bus
calculated by training data.

• Multi Layer Perceptron (MLP): We use the classical multi
layer perceptron method [10] to predict the value in test set.
The input of MLP is the concatenation of the embedding
vectors of bus, weather, street and temporal features. This
baseline is used to illustrate the importance of formulating
fuel consumption as sequential model.

• Vanilla LSTM (v-LSTM): We use the sequence of fuel con-
sumption without using any other features i.e. weather, tem-
poral or spatial features.

EvaluationMetrics:We adopt two popular error metrics, mean
absolute error (MAE) and rootmean square error (RMSE) to evaluate
the performances of our methods and the baselines. These two
metrics are widely used in sequential prediction problems [19, 20].
The smaller the value of MAE and RMSE, the more accurate the
model is. In general, RMSE penalizes more on the large errors and
less on smaller ones than MAE does. The two metrics are defined
by the two formulas below:

𝑅𝑀𝑆𝐸 =

√√√√
1

𝑁𝑡𝑒𝑠𝑡

∑
𝑥 ∈𝑇𝑡𝑒𝑠𝑡

𝐿𝑥∑
𝑡=1

(𝑥𝑡 − 𝑥𝑡 )2

𝑀𝐴𝐸 =
1

𝑁𝑡𝑒𝑠𝑡

∑
𝑥 ∈𝑇𝑡𝑒𝑠𝑡

𝐿𝑥∑
𝑡=1

|𝑥𝑡 − 𝑥𝑡 |

(6)

where 𝑁𝑡𝑒𝑠𝑡 is the number of total data points of all fuel consump-
tion data on test set 𝑇𝑡𝑒𝑠𝑡 and 𝐿𝑥 is the length of a particular se-
quence 𝑥 on test set 𝑇𝑡𝑒𝑠𝑡 .

Parameter Setting: The dimension of each latent feature of
each variant of FuelPred model is 50. The hidden layer has the size
of 50. The number of epochs for our experiment is 500. We use
0.001 as learning rate for Adam algorithm [15] to optimize the loss
function. We randomly split 80% of sequences for training and the
rest 20% is used for testing. To initialize the hidden vector of LSTM,
we use uniform distribution within the range 0 and 1.

5.2 Experiment Result
5.2.1 Prediction Task. Table 1 shows the prediction performances
of variant of FuelPred as well as the baselines. From the table, we
obverse that.

• Firstly, the table points out that neural networks-based meth-
ods have better performance than the naive ones. For in-
stance, the prediction improvement of MLP over Global
Mean is around 15.2% while the one between v-LSTM and
Global Mean is 23%. It shows that the fuel prediction problem
ismuchmore complicated and it can contain some non-linear
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Table 1: Prediction performance of our models and the base-
lines. The smaller the value, the better themodel is. The best
performance is highlighted.

Method MAE RMSE

Global Mean 2.07 8.11
Bus Mean 1.92 7.23
MLP 1.7971 6.78
v-LSTM 1.6728 5.32
FuelPred (T) 1.237 5.27
FuelPred (B) 1.32 5.30
FuelPred (W) 1.35 5.309
FuelPred (S) 1.248 5.279
FuelPred (W/S) 1.126 5.136

correlations. Luckily, the neural network has the ability to
approximate non-linear relationships and helps us to reveal
and make use of these relations.

• Secondly, we observe that the performance of v-LSTM is
better than MLP. Specifically, v-LSTM improves 7.43% more
than MLP method. It suggests that we need to model the fuel
consumption as a sequence and LSTM is a suitable tool for
such prediction.

• Thirdly, all variants of FuelPred outperform v-LSTM model.
For instance, the prediction performance (MAE) of FuelPred
(T) is more than 10% higher than the one of v-LSTM. From
this result, we can conclude that all features are useful to
predict the fuel consumption of buses. It strengthens our
empirical analysis in Section 3.

• Fourthly, among variants of FuelPred, temporal features pro-
duce significant improvement compare to other features.
Particularly, the RMSE of FuelPred (T) is 5.27 while the clos-
est one among is 5.279 i.e. FuelPred (S).

• Lastly, the combination of two external features i.e., weather
and spatial features, show significant improvement com-
pared to other features alone. Moreover, FuelPred (W/S) has
the highest performance of all other methods in both met-
rics. It indicates that these two features have some latent
relationship which helps us to contribute to model the more
accurate prediction method.

We further apply hypothesis testing to examine if our improve-
ments are significantly better than the baselines. Specifically, the
null hypothesis states that the performance of our methods and
the baselines are statistically similar while the alternative hypoth-
esis specifies the performance of our methods are significantly
improved compared to the baselines. To achieve the goal, we apply
the paired t-tests [13] to compare each FuelPred and v-LSTM. Since
the p-values of all tests are less than 0.05, we conclude that the per-
formance of each FuelPred is significantly and statistically better
than v-LSTM. For that reason, it implies the importance of features
such as weather to enhance the modeling of sequential nature of
fuel consumption.

5.2.2 Importance of features in training process. The spatial, tem-
poral, weather and bus features do not only benefit the prediction
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Figure 5: The value of loss function over epoches during
training of v-LSTM, FuelPred (W) and FuelPred (W/S).

accuracy, they also play an important role in training process. To il-
lustrate this point, we compare the value of loss function of multiple
methods over epochs.

Figure 5 shows the above task for the three models: v-LSTM,
FuelPred (W) and FuelPred (W/S). The naive methods i.e. global/bus
mean and MLP are not depicted in the figure because of (i) their
poor prediction performance and (ii) the lack of modeling sequential
nature. From the figure, we observe that after 500 epochs, the three
models seem to converge to their stationary points. Compared to
v-LSTM, FuelPred (W) converges faster. Specifically, after more
than 100 epochs, FuelPred (W) reaches its convergence point while
v-LSTM takes more than 200 epochs. Due to the lack of space, we
only depict the value of loss function of FuelPred (W). However,
other models with single features i.e. FuelPred (T), FuelPred (B),
FuelPred (S) have the same trend with FuelPred (W) which take less
epochs to reach the convergence point than v-LSTM. Therefore, it
suggests that our proposed features are actually useful not only for
prediction, but also for helping us reduce training time. Between
the two models FuelPred (W) and FuelPred (W/S), the latter model
only takes around 70 epochs for convergence. After 500 epochs,
the two models reach the similar training loss but the gap between
FuelPred (W) and FuelPred (W/S) is smaller than the one of v-
LSTM and FuelPred (W). Hence, we conclude that using spatial and
weather features benefits the training process more than weather
features exclusively.

5.2.3 Parameter Study Experiment. Next, we study the size of em-
bedding vectors to the prediction performance. For not giving ad-
vantages to any features, we use the equal size of embedding vector
for all features. We tune the size of embedding vector from 20 to 300
and use MAE as well as RMSE metrics to measure the prediction
performance of our FuelPred models.

Table 2 presents the performance of FuelPred (S), FuelPred (W)
and FuelPred (W/S) with various setting of the size of embedding
vector. From the table, we observe that under different embedding
sizes, FuelPred (W/S) consistently performs better than the other
two models in the two metrics (except when embedding size is
20). Moreover, FuelPred (W/S) achieves the best performance when
the embedding size is equal to 100. In general, increasing the size
improves the prediction performance for all FuelPred models. How-
ever, the improvement when the size increases 100 to 200 is slower
than the one in previous configuration. Increasing the size from
200 to 300 could not lead to the significant improvement in both
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Table 2: Prediction performance of FuelPred with various embedding sizes. The smaller the value, the better the model is. The
best performance for each model is highlighted.

MAE RMSE
Embedding size FuelPred (S) FuelPred (W) FuelPred (W/S) FuelPred (S) FuelPred (W) FuelPred (W/S)

20 1.278 1.37 1.32 5.311 5.38 5.21
50 1.248 1.35 1.126 5.279 5.309 5.136
100 1.245 1.3312 1.1129 5.272 5.3 5.139
200 1.241 1.333 1.1145 5.3 5.301 5.139
300 1.272 1.351 1.13 5.33 5.38 5.22

metrics. It suggests that the models encounter the overfitting prob-
lem. Despite showing results for the above three methods, similar
observations are also achieved from other variants of FuelPred, but
due to space limitation, we omit their performances in this section.

6 CONCLUSION
In this work, we have investigated the problem of energy use of bus
transportation. First, by using real data from the city of Chattanooga,
we analyzed the impact of several features (e.g. weather/temporal/spatial
features) to the problem. Second, we proposed a method named
FuelPred that is based on LSTM to predict the energy consumption
of buses. Third, we conducted several extensive experiments to
compare the contribution of these features to prediction model.
Through experiments, we conclude that FuelPred is better than the
baselines and the features play significant roles in the training and
testing processes. This paper is one of the first works that use real
data to understand the fuel consumption of bus transportation.

There are several directions to extend this research further. In
the current prediction model, we have not considered the histori-
cal sequence of the features’ attributes. Previous works [20] have
shown that considering driving series can actually improve the
performance of sequential predictive model. We also assume that
the skill of all bus drivers is similar, so including this factor may
increase the performance of FuelPred model. Furthermore, with
the rise of attention mechanisms [3] in neural networks, we can
extend FuelPred to measure the in-correlation of features to energy
consumption of buses.
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