
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Online Weighted Bipartite Matching with Capacity Constraints
Hao Wang, Zhenzhen Yan, Xiaohui Bei

Nanyang Technological University

Singapore

ABSTRACT
We investigate an online edge-weighted bipartite matching problem

with capacity constraints. In this problem, the supply vertices are

offline with different capacities. Demand vertices arrive online and

each consumes a certain amount of resources. The goal is to maxi-

mize the total weight of the matching. This framework can capture

several real-world applications such as the trip-vehicle assignment

problem in ridesharing. We model the offline optimization problem

as a deterministic linear program and provide several randomized

online algorithms based on the solution to the offline linear pro-

gram. We analyze the performance guarantee of each algorithm

measured by its competitive ratio. Importantly, we introduce a re-

solving heuristic that periodically re-computes the offline linear

program and uses the updated offline solution to guide the online

algorithm decisions. We find that the algorithm’s competitive ratio

can be improved when re-solving at carefully selected time steps. Fi-

nally, we investigate the value of the demand distribution in further

improving the algorithm efficiency.

KEYWORDS
online bipartite matching, randomized algorithm, re-solving heuris-

tic, competitive ratio

1 INTRODUCTION
In a typical online bipartite matching problem, requests arrive se-

quentially following some probability distribution. Upon the arrival

of each request, a decision has to be made to either match the re-

quest to an appropriate resource, or reject it. If the request gets

matched, it consumes a certain amount of resources. Resources

can be replenishable or non-replenishable. Each match made be-

tween the request and the resource generates a profit. The goal is

to maximize the total profit generated from all matches.

The online bipartite matching has been widely applied to var-

ious resource allocation problems. Examples include airline seat

allocation, clinic appointment slot allocation, and car allocation in

the online ride hitch problem. Particularly, ride hitch is a recent

innovation of ride sharing. It refers to a mode of transportation in

which private car drivers offer to share their journeys to multiple

passengers based on coordination through a centralized dispatch.

For example, drivers may share part of their ride on the way to

work with other passengers who have similar itineraries, and the

drivers will receive remuneration to compensate the petrol and

labor costs. An example is the grab hitch service launched by Grab

in 2015, the leading super app in Southeast Asia. A ride request

may involve multiple passengers. In each trip, a driver could take

multiple ride requests as long as the capacity permits. Each ride

trip of a driver can be regarded as a non-replenishable resource.

Once the capacity is used up, it becomes unavailable in demand ful-

fillment. This new generation of ridesharing significantly increases

vehicle occupancy rates and the efficiency of urban transportation

systems, consequently reducing congestion and pollution.

In the grab hitch platform, drivers are not allowed to pick up

passengers by themselves via self-arrangements, but can only take

ride requests assigned by the platform. Therefore, one key problem

faced by the platform is to automatically match ride requests to

available drivers in real-time so as to maximize the total profit.

A rich literature has been devoted to the study of onlinematching

algorithms with different models and under different assumptions.

Karp et al. [19] first studied the online bipartite matching problem

to maximize the number of matches under the assumption that the

arrival process is determined by the adversary. In their paper, each

resource has a single unit of capacity and each request is assumed

to consume only one unit of resource. Feldman et al. [14] revisited

the problem by assuming the arrival process to be stochastic, that

is, the arrival of online vertices follows a known independent and

identical distribution (i.i.d). Brubach et al. [8] extended the earlier

work to the model to maximize the vertex-weighted sum of matches

and the edge-weighted sum of matches. They again assumed unit

demand size for each online request and unit capacity for each

offline resource. However, in practice, the resources often have

general capacities, and each request may consume multiple units

of capacity in one match. The ride hitch problem described earlier

is an example. Different cars have different number of vacancies to

accommodate passengers. Each ride request could involve multiple

passengers, hence occupy multiple vacancies. The model studied in

this paper considers such a general problem settings. We assume

there are multiple types of resources and each type of resource

has a general capacity. Each online request consumes a single type

of resource but by multiple units. We also assume an i.i.d arrival

process. Our goal is to maximize the edge-weighted sum of matches.

To the best of our knowledge, this is the first paper considering the

online matching problem in such a general setting.

Our Contribution
To solve this general online matching problem, we start by propos-

ing a simple randomized algorithm based on linear program round-

ing. The algorithm allocates an appropriate resource to each request

with certain probability that is based on the solution of an offline

linear program. We analyze the performance of this simple algo-

rithm. Following the convention in the literature, we measure the

efficiency of an online algorithm by the competitive ratio, which is

defined as the total profit generated from the algorithm, divided by

the maximum profit achievable if full information on the arrival

of demand requests is known beforehand. Next, as the main result

of this paper, we introduce a re-solving heuristic to the random-

ized algorithm. The idea of re-solving is to periodically re-compute

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Wang, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the offline linear program and uses the updated offline solution to

guide the online algorithm. We show that re-solving at a right time
could help significantly improve the performance of the algorithm.

We also investigate the value of demand distribution of the online

request to further improve the algorithm’s efficiency.

Finally, we conduct extensive experimental studies to test the

efficiency of our proposed algorithms. On average, our online algo-

rithm achieves 70% − 80% of the optimal profit on both synthetic

and real-world datasets. In particular, the proposed randomized

algorithm with the re-solving heuristic significantly outperforms

all the other algorithms. We observe that by re-solving the linear

program at our proposed time, the profit obtained is increased by

almost 20% compared with the standard randomized online algo-

rithm. We also show that the advantage of our proposed algorithms

becomes more salient when the demand in the market increases.

We summarize our main contributions as follows:
(1) We solve a general online bipartite matching problem where

the offline resources are equipped with multiple capacities and

each online request consumes multiple units of capacity once

matched. The arrival process is assumed to be i.i.d and the goal

is to maximize the edge-weighted sum of matches.

(2) We propose a randomization algorithm based on the solution to

an offline linear program and establish its competitive ratio as

a function of the maximal demand among requests. In a special

case that the maximal demand is 2, the competitive ratio is
1

4
,

which is comparable to the existing results on similar problem

settings.

(3) We further introduce a re-solving heuristic to the randomiza-

tion algorithm and show that re-solving at the right time could
significantly improve the performance of the algorithm.

(4) We investigate the value of demand distribution of the online

request to further improve the algorithm’s efficiency.

2 RELATEDWORK
The problem of online bipartite matching has been intensively stud-

ied, and the literature is too vast to survey here. We provide an

overview of the work most directly relevant to ours. The first algo-

rithm for the single-capacity unweighted online bipartite match-

ing problem was given by Karp et al. [19]. They introduced the

RANKING algorithm and proved a tight 1 − 1

e competitive ratio

with adversary online vertex arrival order. The analysis was later

simplified by Devanur et al. [11]. Aggarwal et al. [3] generalized

the problem by considering weigthed offline vertices. Mehta et al.

[25] investigated the multi-demand case known as the AdWords

problem and presented a 1 − 1

e competitive algorithm.

Another line of works considers the random arriving model,

in which the online vertices arrives in a uniformly random order.

Karande et al. [18] and Mahdian et al. [22] independently showed

that the RANKING algorithm can achieve a competitive ratio better

than 1 − 1

e in the random arrival model. Huang et al. [16] further

generalized the analysis to the vertex-weighted setting. Devanur

and Hayes [10] presented a 1 − ϵ competitive algorithm for the

AdWord problem in the random arrival model.

Finally, a third line of works, which also includes this work, as-

sumes the arrival of online vertices follows a known independent

and identical distribution [6, 14, 15, 17, 23]. In this model, a closely

related work is Xu et al. [27].In their paper, there are multiple types

of resources and each request could consume at most one unit of

each type. The objective is to maximize the vertex-weighted sum

of matches. They designed an algorithm which achieves
1

4∆ com-

petitive ratio, where ∆ denotes the maximal number of resources

requested by arrivals. Although their paper shares a similar setting

to ours, our paper distinguishes from theirs in the following aspects:

First, the profit in our paper is defined on edges instead of vertices.

The edge-weighted matching is known to be much more nebulous

than the vertex-weighted case [13]. Second, we assume each arrival

only requests one type of resource but could consume multiple

units of resources.

Another relevant problem to online bipartite matching is the

online generalized assignment problem. In the online generalized

assignment problem, there arem (static) bins each with a capacity

limit. Items arrive online and consume some capacity of the assigned

bins. Alaei et al. [4] provided an algorithm for this problem with

1− 1

k competitive ratio, assuming that no item consumes more than

1

k fraction of any bin’s capacity. Kesselheim et al. [20] and Naori et

al. [26] considered the online generalized assignment problem in

the random arrival model and provided the best-known competitive

ratio of
1

6.99 .

Other extensions include generalizing the graph to a general

network structure and allowing a matching delay, i.e. the request

is allowed to wait for some time before being matched (c.f. Chen

et al. [9], Adamczyk et al. [1], Adamczyk et al. [2], Baveja et al.

[7], Mehta et al. [24], Ashlagi et al. [5], Dickerson et al. [12] and

Lowalekar et al. [21]).

3 MODEL
We define our online bipartite matching problem in a ride hitch

context. Consider a bipartite graphG = (U ,V ,E), whereU denotes

the set of drivers’ offers and V denotes the set of possible riders’

requests. Each offer u ∈ V is associated with a capacity cu , and
each request v has a demand dv . An edge (u,v) exists for u ∈ U
and v ∈ V if the offer u can can be matched to the request v . The
edge is also associated with a weight (i.e. revenue)wuv .

In our problem definition, we will treat drivers’ offers as offline

resources and riders’ requests as online demands. This is because

generally, the driver has amuch longer time tolerance to bematched.

He/She might plan to pick up some friends in the evening but put

up an offer in system in the morning. In contrast, a rider’s request

usually needs to be matched in seconds. If no suitable drivers can

be found within one minute, the request will be rejected.

We assume an i.i.d. distribution model of request arrival over

an online time horizon of T rounds. That is, the set U is made

available offline beforehand. In each round, a rider request v is

sampled with replacement from a known distribution {pv } over V .

The distribution is independent and identical in every round. Upon

the arrival of request v , a decision has to be made to either reject v ,
or to match it to some neighbor offer u ∈ U that still has enough

remaining capacity. If a pair (u,v) is matched, a revenue ofwuv is

generated and the capacity of u is decreased by dv .
Below is the list that summarizes the notations.

• T : total numbers of online requests.

• pv : the probability of type v vertex in each arrival.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Online Weighted Bipartite Matching with Capacity Constraints Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

• dv : the demand of online request v .
• D: the maximal demand of all online requests.

• cu : the capacity of offer u.
• C: the maximal capacity of all offers.

• wuv : the weight (i.e., revenue) associated with edge (u,v)

MILP formulation. Given a realized arrival sequence s of requests,
we can solve a mixed integer linear program (MILP) to optimally

match them to the offers.

max
∑

(u,v)∈E

wuvXuv (s)

s.t.
∑

v :(u,v)∈E

dvXuv (s) ≤ cu ,∀u ∈ U∑
u :(u,v)∈E

Xuv (s) ≤ Nv (s),∀v ∈ V

Xuv (s) ∈ {0, 1},∀(u,v) ∈ E

(1)

Here Nv (s) denotes the number of type v vertex appeared in

sequence s . The first set of constraint restricts the total consumption

of each resourceu below its capacity and the second set of constraint

specifies the matched request cannot exceed the total arrivals.

We denote the optimal solution to (1) as H (s) and the optimal

objective value asOFF (s). Then the expected revenue generated by

optimally solving each possible arrival realization can be formulated

as E[OFF] =
∑
s P(s)OFF (s), where P(s) denotes the probability of

sequence s among all possible sequences.

Competitive Ratio Analysis. Note that one usually cannot achieve
E[OFF] via an online algorithm due to an unforeseen circum-

stance in the future. In this paper, we aim to design online al-

gorithms to achieve as a larger expected revenue as possible. To

evaluate the performance of an online algorithm L, we adopt a

commonly used performance criterion— competitive ratio (CR). For
a given sequence s , we denote the outcome achieved by an algo-

rithm L asALGL(s). Then the expected outcome by the algorithm is

E[ALGL] =
∑
s P(s)ALGL(s). The competitive ratio of an algorithm

L is defined as

CRL =
E[ALGL]

E[OFF]
(2)

Noticed thatOFF (s) of (1) is a concave function in Nv (s) for each
sequence s . By taking the expectation over all possible arriving

sequences, replacing E[Nv (s)] by pvT , and defining yuv =
xuv
pvT ,

we get upper bound E[OFF] by the following linear program.

max
∑

(u,v)∈E

Tpvwuvyuv

s.t.
∑

v :(u,v)∈E

pvdvyuv ≤
cu
T
,∀u ∈ U∑

u :(u,v)∈E

yuv ≤ 1,∀v ∈ V

yuv ≥ 0,∀(u,v) ∈ E

(3)

We use OPT to denote the optimal value of (3).

Proposition 3.1. OPT ≥ E[OFF], i.e., E[OFF] is upper bounded
by the optimal value of (3).

Algorithm 1: Samp(α) Algorithm
Result: Online matchingsM
Solve the LP (3) and get the optimal solution y∗;

Time t = 1;

MatchingsM = ϕ;

while t ≤ T do
Online vertex v arrives;

Randomly choose u with probability αy∗uv ;

if cu ≥ dv then
Match u and v : cu = cu − dv ,M = M + (u,v);

else
Reject v ;

end
t = t + 1;

end

We omit the proof due to space constraints.

In the subsequent sections, we will use linear program (3) to aid

our design of the randomized online algorithms and analyze their

competitive ratios.

4 A RANDOMIZED ALGORITHM — SAMP (α)
Our first online algorithm takes a common linear-program-rounding

approach. First solve the optimal solution y∗uv from (3). Then for

each arrival request v , an offer u is randomly chosen to match v
with probability αy∗uv . Here α is a parameter that controls how

aggressively the online algorithm makes the matches.

Let Cut denote the amount of capacity of offer u consumed by

the requests before time t . We have

E[Cut] =
t−1∑
t ′=1

∑
v ′∈V

pv ′αy∗uv ′dv ′ =

t−1∑
t ′=1

∑
v ′∈V

αy∗uv ′dv ′pv ′

≤

t−1∑
t ′=1

αcu
T
=

αcu (t − 1)

T

(4)

where the last inequality is from offline vertex’s capacity constraint.

By Markov’s inequality, we can write the probability that v is

matched to u at time step t as

Prα (u,v, t) ≥ αpvy
∗
uv

[
1 − (t − 1)

αcu
T (cu − dv + 1)

]
This allows us to bound the expected number of times that edge

(u,v) is matched by the algorithm during the first t ′ steps.

Nα (u,v, t
′) ≥

t ′∑
t=1

Prα (u,v, t)

=

t ′∑
t=1

αpvy
∗
uv

[
1 − (t − 1)

αcu
T (cu − dv + 1)

]
≥

[
−

(
t ′

T

)
2 α2cu
2(cu − dv + 1)

+
t ′

T
α

]
Tpvy

∗
uv

≥

[
−

(
t ′

T

)
2 α2D

2

+
t ′

T
α

]
Tpvy

∗
uv

(5)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Wang, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

The last inequality holds as 1 ≤ cu ≤ C and 1 ≤ dv ≤ D and

cu ≥ dv , which implies that for every u and v ,

cu
cu − dv + 1

= 1 +
dv − 1

cu − dv + 1
≤ 1 +

D − 1

1

= D.

Therefore, we can further bound the expected performance of the

Samp(α) algorithm as follows.

ALGα =
∑

(u,v)∈E

[wuvNα (u,v,T)]

≥

(
−
α2D

2

+ α

) ∑
(u,v)∈E

Tpvwuvy
∗
uv ≥

(
−
α2D

2

+ α

)
OPT

(6)

Proposition 4.1. The Samp(α) algorithm has competitive ratio
CR ≥ 1

2D .

The proof of the proposition is a straightforward result from the

analysis above and is omitted here.

4.1 Re-solving Heuristic
Note that in algorithm Samp(α), the linear program (3) is solved

once at the beginning of the algorithm. Then the solution will be

used to guide the online algorithmmatching probability throughout

the whole time span. However, in the middle of the process, due

to the randomness of the request arriving sequence, it is probably

that the capacities of the orders are consumed disproportionately.

In such cases, the original LP can no longer capture the correct

resource configuration. As such, we need to re-solve the linear

program with the updated capacity information, and update the LP

solution to guide the subsequent allocation. We call this refinement

step the re-solving heuristic.
In this section, we will analyze the re-solving heuristic. Our goal

is to decide whether and when this heuristic will improvement the

algorithm performance.

4.1.1 Re-solving does not always help. First we try to answer the

question of whether the re-solving heuristic, regardless of when it

is applied, always helps the algorithm to generate a better solution.

Intuitively this may seem true. However, in the following we show

via a counterexample that the re-solving heuristic may make things

worse sometimes.

• 1 offline vertex: c = 2

• 2 online vertices: v0 and v1
• v0: p0 =

1

2
, d0 = 1,w0 = w > 1

• v1: p1 =
1

2
, d1 = 1,w1 = 1

• T = 4

In this case, D = 1 hence α = 1

D = 1. By solving the offline

LP (3), we know that algorithm Samp will always accept v0 as long
as the capacity permits and reject v1. To understand the perfor-

mance of algorithm Samp, let s denote the realized sequence. If

s = (v1,v1,v1,v1), then the offline optimal profit is 2 while Samp

gives 0. If there is exactly one v0 in s , the offline optimal profit is

1 +w while Samp givesw . If there are more than one v0 in s , both
offline optimal profit and the expected profit by Samp are 2w . Let q0
denote the probability that s has nov0 and q1 denote the probability
that s has one v0. In summary, the expected profits generated by

the offline linear program and Samp are different only if the realized

sequence has less than two v0. According to the i.i.d assumption,

we have q0 =
1

16
and q1 =

1

4
. Therefore we have:

E[OFF] = E[ALG] + 2q0 + q1 = E[ALG] +
3

8

Next we study the effect of re-solving heuristic. Suppose we re-solve

the linear program after the first arrival. Consider such a realized

sequence s0 = (v1,v1,v0,v0). The re-solved LP will suggest to

accept v0 with probability 1 and accept v1 with probability
1

3
from

the second arrival on. Hence the expected profit generated under

this sequence is
2

3
×2w+ 1

3
(1+w) by the re-solving method, which is

equivalent to say the expected loss compared to the offline optimal

solution is
w−1
3

. Noticed that the probability of having a sequence

s = s0 is
1

16
. Then we can upper bound the expected outcome of

this re-solving method as follows

E[ALG ′] ≤ P(s0)

[
OFF (s0) −

w − 1

3

]
+
∑
s,s0

P(s)OFF (s)

≤ E[OFF] −
w − 1

48

By settingw > 19, we have E[ALG ′] < E[ALG]. In other words,

to re-solve LP could generate a worse performance.

4.1.2 Re-solving at the right time helps. In this section we focus on

the problem of when to re-solve. Consider the following question: if

we are only allowed to re-solve the LP once during the whole time

span, when should we re-solve the LP to maximize the expected

performance of the algorithm? Suppose we re-solve at time t ′ =
(1 − β)T = γT . Let T ′

denote the remaining time period. Then

T ′ = βT . LetXu denote the remaining capacity ofu at time t ′. Then
the new LP becomes

max
∑

(u,v)∈E

T ′pvwuvyuv ,

s.t.
∑

v :(u,v)∈E

pvdvyuv ≤
Xu
T ′
,∀u ∈ U ,∑

u :(u,v)∈E

yuv ≤ 1,∀v ∈ V ,

yuv ≥ 0,∀(u,v) ∈ E

yuv = 0,∀(u,v) ∈ E,Xu < dv .

(7)

We add the last constraint because when running the algorithm

for several rounds, some offline vertex might have less remaining

capacity than the demand. In this case, the edge between them still

exists but the matching is not possible. Denote the optimal solution

of the re-solved linear program as y′∗
and the optimal value as

OPT ′
. The optimal solution and optimal value of the new linear

program depend on the remaining capacity, which is a random

variable. Hence the optimal solution y
′∗
and optimal value OPT ′

are also random variables. To simplify the analysis, we condition on

a particular realization of the remaining capacity in the subsequent

presentation, i.e. Xu = c ′u , in which case, y
′∗
and optimal value

OPT ′
are deterministic.

Let N ′
α (u,v,T) be the expected number of (u,v) that is matched by

re-solved algorithm, which is to match the resource based on αy∗

before t ′ and on α1y
′∗
after t ′. Following a similar analysis above,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Online Weighted Bipartite Matching with Capacity Constraints Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

we have from the re-solve point t ′, the expected match between a

resource-request pair (u,v) can be analyzed as follows:

N ′
α (u,v,T

′) ≥

[
−(

T ′

T ′
)2

α2
1
c ′u

2(c ′u − dv + 1)
+
T ′

T ′
α1

]
Tpvy

′∗
uv

≥

[
−
α2
1
D

2

+ α1

]
Tpvy

′∗
uv

(8)

By choosing α1 =
1

D , we have N ′
α (u,v,T

′) ≥ 1

2DTpvy
′∗
uv . The

second inequality holds as y
′∗
uv = 0 if c ′u < dv , which implies

for any y
′∗
uv > 0, c ′u ≥ dv , hence

c ′u
c ′u−dv+1

≤ 1 +
dv−1

c ′u−dv+1
≤ dv .

Therefore,

N ′
α (u,v,T) ≥

[
−
α2D

2

γ 2 + αγ

]
Tpvy

∗
uv +

1

2D
Tpvy

′∗
uv (9)

The expected outcome of re-solve algorithm is∑
uv

wuvN
′
α (u,v,T) ≥

[
−
α2D

2

γ 2 + αγ

]
OPT +

1

2D
OPT ′

Then we can bound the competitive ratio from below, i.e.,

CR′ ≥

[
−α 2D

2
γ 2 + αγ

]
+ 1

2D
OPT ′

OPT = −
γ 2α 2D

2
+ γα + 1

2D
OPT ′

OPT .

(10)

Now we want to show the lower bound (LB) of
OPT ′

OPT and check if

we need to re-solve according to this LB. We construct a solution

y′
for LP’ based on the optimal solution of LP. We denoteU+ as the

set of offline vertices whose capacity without change, i.e., c ′u = cu
andU− as the rest of the offline vertices. Consider such a solution

y′uv =

{
y∗uv u ∈ U+

0 u ∈ U−

(11)

It is easy to check thaty′
is feasible for the re-solved linear program

(7). Therefore,

OPT ′

OPT
≥
T ′(w ′(U+) +w

′(U−))

T (w(U+) +w(U−))
= β

w ′(U+)

w(U+) +w(U−)
(12)

where wu =
∑
v ∈Adj(u) pvwuvy

∗
uv , w(S) =

∑
u ∈S wu and w ′(S) =∑

u ∈S
∑
v ∈Adj(u) pvwuvy

′
uv . Bearing in mind that the remaining

capacity Xu is a random variable, OPT ′
is also random. From the

analysis above, we have

Proposition 4.2. Define R = maxucu
minvdv

, E
[
OPT ′

OPT

]
≥ (1−γ)e−αγ R

We omit the proof of the proposition due to space constraints.

Based on the result in Proposition 4.2. Let α = 1 and γ = 1

D .

We can further establish the following proposition to demonstrate

that re-solving at γT helps to achieve a better lower bound for the

competitive ratio.

Proposition 4.3. Re-solving at T
D helps to generate a better com-

petitive ratio which is CR′ ≥ 1

2D +
1

2D (1 − 1

D)e−
R
D

The first term in the established competitive ratio is exactly the

one we have built for algorithm Samp. The second term is non-

negative as long as D ≥ 1, which indicates that to re-solve at our

proposed time will generate at least the same competitive ratio as

Samp(α).

4.1.3 Re-solving Many Times At the Right Time Further Helps to
Improve the Bound. Consider such a randomization algorithm. Ran-

domly allocate the resource based on Samp(α) until γT . After ith
re-solve, the allocation is based on Samp(αi) and the new re-solve

time point is at γ proportion of the remaining time period. We call

such an algorithm as a log-resolving algorithm with parameter γ
to specify the re-solving time point. Denote the remaining time

period at ith re-solve as T (i)
. T (0) = T . Let X

(i)
u denote the remain-

ing capacity right before ith re-solve. Notice that X
(i)
u is a random

variable, we first study the bound of the expected ratio between

the optimal values of two consecutive linear programs conditioned

on a realization of X
(i)
u .

Proposition 4.4. Conditioned on X (i)
u = c

(i)
u ,∀u, under the con-

dition that R
T (i) << 1, we have

E

[
OPTi+1
OPTi

���c(i)] ≥ (1 − γ)e−αγ R (13)

We omit the proof here as it is similar to Proposition 4.2. With

this proposition, we are now ready to establish our first main result

in the paper.

Theorem 4.5. The log-resolving algorithm with γ = 1

D gives a

competitive ratio at least 1

2D
1−CK+1

1−C , where C =
(
1 − 1

D

)
e−

R
D . This

value increases with the number of re-solving time K and converges
to 1

2D(1−C)
when K approaches infinity.

Proof: To start the proof, we first define some notations: denote the

time for ith re-solve as ti , the ratio between the maximal remaining

capacity and the minimum demand as Ri and the optimal value of

the ith re-solved LP as OPTi . Samp(α) is applied at the beginning

and after ith re-solve, Samp(αi) is applied.ALG(s,T) denotes the ex-
pected outcome from time s to T using the designed randomization

algorithm, which is to match the resource according to the solution

from the corresponding re-solved deterministic linear program in

each time interval. We can derive a lower bound if the expected

performance of our re-solving heuristic in the following way: from

the beginning of the time period to the first re-solve point t1, the
lower bound is derived from (5); from t1 onward the algorithm is

based on the designed randomization algorithm. Therefore,

E[ALG(0,T)] ≥

(
−
γ 2α2D

2

+ γα

)
OPT + E[ALG(t1,T)]

Hence we have

E[ALG(0,T)]
OPT ≥ −

γ 2α 2D
2
+ γα + E[ALG(t1,T)]

OPT
= −

γ 2α 2D
2
+ γα + E

[
ALG(t1,T)
OPT1

OPT1
OPT

]
Notice that the remaining capacity at time t1 is a random variable,

hence the re-solved LP is also a random variable determined by

the remaining capacity. Hence we can reformulate the last term as

E
[
ALG(t1,T)
OPT1

OPT1
OPT

]
= E

[
ALG(t1,T)
OPT1

��c(1)] · E [OPT1
OPT

]
. From propo-

sition 4.4, we have E
[
OPT1
OPT

]
≥ (1 − γ)e−αγ R . Hence we have

E[ALG(0,T)]

OPT
≥ −

γ 2α2D

2

+γα +E

[
ALG(t1,T)

OPT1

��c(1)] (1−γ)e−αγ R
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Wang, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Conditioning onc(1),OPT1 is deterministic, henceE
[
ALG(t1,T)
OPT1

��c(1)]
represents the expected performance of the randomization algo-

rithm. Starting from t1, we can follow a similar analysis to get the

following inequality

E
[
ALG(t1,T)
OPT1

��c(1)]
≥ E

[
−
γ 2α 2

1
D

2
+ γα1

��c(1)] + E [ALG(t2,T)
OPT2

OPT2
OPT1

��c(1)]
≥ E

[
−
γ 2α 2

1
D

2
+ γα1

��c(1)] + E [ALG(t2,T)
OPT2

��c(1),c(2)] (1 − γ)e−α1γ R

≥ −
γ 2α 2

1
D

2
+ γα1 + E

[
ALG(t2,T)
OPT2

��c(1),c(2)] (1 − γ)e−α1γ R

(14)

With the same analysis we have for each i ,

E
[
ALG(ti ,T)
OPTi

��c(1), . . . ,c(i)] ≥ −
γ 2α 2

i D
2
+ γαi+

E
[
ALG(ti+1,T)
OPTi+1

��c(1), . . . ,c(i+1)] (1 − γ)e−αiγ R

In the last period, we have

E

[
ALG(tK ,T)

OPTK

���c(1), . . . ,c(K)

]
≥ −

α2KD

2

+ αK

Denote E[ALG(ti ,T)
OPTi | c(1), . . . ,c(i)] as li . Hence we have

li ≥ −
γ 2α 2

i D
2
+ γαi + li+1(1 − γ)e−αiγ R ,∀l = 0, ...,K − 1

and lK ≥ −
α 2

KD
2
+ αK . Set αK =

1

D , αi = 1,∀i = 0, ...,K − 1 and

γ = 1

D . We have lK ≥ 1

2D and li ≥ 1

2D + li+1(1 − γ)e−
R
D ,∀i =

0, . . . ,K − 1. Aggregate all the inequalities, we have

l0 ≥
K∑
i=0

1

2D

(
(1 − γ)e−

R
D

)i
= 1

2D

1−

(
(1−γ)e−

R
D

)K+1
1−(1−γ)e−

R
D

→ 1

2D
1

1−(1−γ)e−
R
D
= 1

2D
1

1−(1− 1

D)e
− R
D

4.1.4 Time Complexity. For each arrival, the matching decision is

done by flipping a coin based on the optimal solution to a linear pro-

gram and checking the capacity availability. Hence the computation

efficiency is mainly determined by the computation time of a linear

program. For Samp(1), we need to solve O(1) linear programs, and

it requires O(log |V |) linear programs for the re-solving heuristic.

4.2 With Information of Demand Distribution
Previous section has established the competitive ratio as a func-

tion of the maximal demand. But we have not made use of the

demand distribution. To see the value of the information, we first

aggregate the type of each online arrival as follows: For online ver-

tices with the same adjacent offline vertices and the same weight

for each corresponding incident edges, we aggregate them into a

group. In other words, the set defined by Q(v) = {v ′ | Adj(v ′) =

Adj(v),wuv ′ = wuv ,∀u ∈ Adj(v)} contains all the online vertices
in the same group as v . Then we can distinguish online arrival

vertices by its affiliated group and demand size. We denote the

whole set of groups as Q and the demand set in group q as Lq . For
any vertex v ∈ V , its group is defined by q(v) ∈ Q . The probability

of getting a vertex in group q ∈ Q is

∑
v ∈V:q(v)=q

pv . For vertex in

group q, we define the demand distribution as pl |q =
pql
pq , where

pql =
∑

v ∈V:q(v)=q,dv=l
pv and pq =

∑
l ∈Lq

pql .

From the definition of groups, it is easy to get

Lemma 4.6. There exists an optimal solution to (3), such thatyuv =
yuv ′ is q(v) = q(v ′) and dv = dv ′ .

Then we can revise the linear program (3) accordingly as below

max
∑

(u,(q,l))∈E
Twuq

∑
l
pqlyuql

s .t .
∑

q∈Q

∑
l ∈Lq

pql lyuql ≤
cu
T ,∀u ∈ U∑

u ∈Adj(q,l)
yuql ≤ 1,∀(q, l) ∈ V

yuql ≥ 0,∀(u, (q, l)) ∈ E

(15)

We prove in the following lemma that the revised LP is equivalent

to (3).

Lemma 4.7. (15) is equivalent to (3). Specifically, For all v that
q(v) = q,dv = l , we have an optimal solution y∗ to (15) such that
y∗uql = y∗uv for every adjacent vertex u, where y∗uv is an optimal
solution to (3).

In other words, we can regard the vertices in the same group and

capacity as a super vertex with arrival probability pql and solve

the revised linear program. For each arrival, a resource is matched

according to the revised linear program. The randomization algo-

rithm based on the revised linear program will generate the same

results as the original linear program. In the following analysis,

we will focus on the revised linear program. Denote the optimal

solution to (15) as y∗uql for each u,q, l .

LetNα (u,q, l , t
′) be the expected number ofmatched edge (u,q, l)

from t = 1 to t = t ′. Following a similar analysis to (5), we have

Nα (u,q, l , t
′) ≥

[
−(

t ′

T
)2

α2cu
2(cu − l + 1)

+
t ′

T
α

]
Tpqly

∗
uql

≥

[
−(

t ′

T
)2
α2l

2

+
t ′

T
α

]
Tpqly

∗
uql

(16)

as
cu

cu−l+1
≤ 1 + l−1

cu−l+1
≤ l since l ≤ cu .

Let Al (t
′) = −(t

′

T)2 α
2l
2
+ t ′

T α and Al (t
′) is decreasing in l for

any 0 < t ′ ≤ T .
Then write down the expected outcome of this algorithm:

ALGα =
∑
u,q,l

[wuqNα (u,q, l ,T)]

≥
∑
u,q,l

TpqlwuqAl (T)y
∗
uql

≥
∑
q∈Q

∑
l ∈Lq

TpqlAl (T)
∑
u

wuqy
∗
uql

=
∑
q∈Q

∑
l ∈Lq

TpqlAl (T)Wql

(17)

For notation simplicity, we omitT and useAl to denoteAl (T). To
further analyze the lower bound, we first establish some properties

of vertices in the same group. We defineWql =
∑
u wuqy

∗
uql for

a fixed group q to represent the expected profit generated by the

vertices in the group.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Online Weighted Bipartite Matching with Capacity Constraints Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Lemma 4.8. If q(v) = q(v ′) = q and dv = l < m = dv ′ , then
Wql ≥Wqm .

Lemma 4.8 indicates that within the same group, the vertices

with a smaller demand generates a higher expected profit. Based

on such an observation, we can build the following lemma.

Lemma 4.9. For each type q ∈ Q , given a fixed
∑

l ∈Lq
TpqlWql , we

have
∑
l ∈Lq TpqlAlWql ≥ (− 1

2
E[Dq]α

2 +α)Wq , where E[Dq] is the
expected demand of type q arrivals andWq represents

∑
l ∈Lq

TpqlWql .

Denote Me = maxq∈Q E[Dq]. Then we are ready to present

a new lower bound of the Samp(α) when demand distribution is

available.

Theorem 4.10. With the distribution of demand, Samp(α) gener-
ates a competitive ratio 1

2Me
, whereMe = maxq∈Q E[Dq].

Proof: From Lemma 4.9, we have for all possible type q,∑
l ∈Lq

TpqlAlWql ≥ (−E[Dq]
1

2

α2 + α)Wq ≥ (−Me
1

2

α2 + α)Wq

Therefore,

∑
q∈Q

∑
l ∈Lq TpqlAl (T)Wql ≥ (−Me

1

2
α2+α)

∑
q∈QWq =

(−Me
1

2
α2 + α)W . In other words, the competitive ratio is lower

bounded by −Me
1

2
α2+α . By setting α = 1

Me
, we can get a constant

a competitive ratio
1

2Me
.

4.2.1 Re-solve with Demand Distribution. With information of de-

mand distribution, we can again apply the re-solving heuristic to see

whether we can further improve the competitive ratio. According

to Lemma 4.7, the deterministic linear program (3) can be reformu-

lated as (15). When revolving the problem, the deterministic linear

program can be revised accordingly as follows:

max
∑

(u,(q,l))∈E
Twuq

∑
l
pqlyuql

s.t.
∑

q∈Q

∑
l ∈Lq

pql lyuql ≤
cu
T ,∀u ∈ U∑

u ∈Adj(q,l)
yuql ≤ 1,∀(q, l) ∈ V

yuql ≥ 0,∀(u, (q, l)) ∈ E

yuql = 0,∀(u, (q, l)) ∈ E, cu < l

(18)

Follow a similar analysis in the previous section, we have

E[ALG(0,T)] ≥

[
−

(
t ′

T

)
2 α2Me

2

+
t ′

T
α

]
OPT +

1

2Me
E[OPT ′]

(19)

Following a similar analysis to Proposition 4.3, we can easily derive

the new competitive ratio
1

2Me
+ 1

2Me
(1 − 1

Me
)e−

R
Me if re-solving

once at
T
Me

. The same analysis applies to the case with multiple

times of re-solve.

Theorem 4.11. When demand distribution is available, the log-
resolving algorithm with γ gives a competitive ratio after Kth re-solve
is:

1

2Me

1 −

(
(1 − 1

Me
)e−

R
Me

)K+1
1 − (1 − 1

Me
)e−

R
Me

If the number of re-solving time K increases the ratio can be better.
When K is large, this ratio converges to

1

2Me

1

1 − (1 − 1

Me
)e−

R
Me

5 EXPERIMENT
We test the online algorithms proposed in Section 4 over several

synthetic data sets and a New York city taxi data set. Each data

set specifies a bipartite graph, which is represented byG(U ,V ,E),
whereU ,V represents the offline and online request set respectively

and E denotes the arc set. Let r = |V |

|U |
denote the ratio between the

number of online and offline vertices. We compare our algorithms

to the greedy algorithm, which is a widely used benchmark in the

literature (c.f. Xu et al. [27], Dickerson et al. [12] and Lowalekar et

al.[21]). Specifically, we analyze the following algorithms in this

section.

• Greedy: Assign an arriving request v to the resource u with

the largest weight on the edge (u,v) among all the available

resources; if no available resource found, reject v .
• Samp(1): Refer to the Samp(α) algorithm and choose α = 1.

• RES-γ : Under the Samp(1) framework, update the offline linear

program at t = T (1 − (1 − γ)i) for 1 ≤ i ≤ K , where K is the

maximal re-solve times. Set K = 10. We test over different γ
including γ = 1

D =
1

3
as D = 3 in the data.

The comparison is based on the empirical competitive ratio (ECR).
The empirical competitive ratio (ECR) is defined as the ratio between
the total profit generated from an algorithm and the total offline

optimal profit for a sample of request sequences.

ECRL =

∑
s ∈S PL(s)∑
s ∈S OFF (s)

,

where S denotes the set of sampled request sequences and PL(s)
denotes the profit by algorithm L for the sequence s . Noticed that

different algorithms share the same offline optimal profit, the com-

parison of empirical competitive ratio is equivalent to a comparison

of profit. For a given bipartite graph G and a planing horizon T ,
we generateM request sequences by uniformly sampling each re-

quest from the demand pool. We run tests for T = k |V | where

k = 1, 2, 3, 4, 5.

The test is organized in the following manner: We first test

different algorithms in New-York city taxi data, with the request

weights ranging from 1 to 5. We examine the performance of each

algorithm in different markets and investigate the effect of different

re-solving time points. Lastly, we extend the test to some synthetic

data generated and test different request weight ranges.

The first column of Figure 1 presents the performance of differ-

ent algorithms in different markets. The parameter k and r indicate
the unbalance between the supply and demand in the market. The

larger they are, the more overwhelming the demand is. From the

figure we can see that in general, the re-solving method outper-

forms both greedy method and Samp(1) algorithm. On average,

incorporating re-solving heuristic in the randomization algorithm

improves the profit by 20%. Greedy method performs well when

demand is not high. But its performance drops significantly when

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Wang, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) r = 1 (b) r = 1 (c) Synthetic data: 1 ≤ wuv ≤ 5

(d) r = 2 (e) r = 2 (f) NYC data, 1 ≤ wuv ≤ 2

(g) r = 3 (h) r = 3 (i) Synthetic data: 1 ≤ wuv ≤ 2

Figure 1: Result Summary

demand increases. In contrast, the performance of the proposed ran-

domization algorithms is more robust across different markets. One

possible reason is that when demand is high, strategically skipping

some inferior demand can better utilize the resource capacity.

To further understand how important it is to re-solve at a right

time. We compare algorithms with different re-solving time points.

The second column in Figure 1 compares the performance of al-

gorithms with different γ when applying RES-γ algorithm. From

the figure we can see that resolving at our proposed time which

is to set γ = 1

D =
1

3
outperforms the other time points. It could

achieve up to 12% improvement compared to some other resolving

time. Consistent with the observation in the column in Figure 1, the

randomization algorithms gets better performance whenγ becomes

larger, for all the tested γ s.
We extend the test to the synthetic data generated and plot the

results in Figure (a) in the last column of Figure 1. The observations

are consistent with those in the first column . We further test the

data with edge weights in a smaller range. It is observed that when

the weight range becomes smaller, online algorithms’ performance

increases. This observation is more significant when it applies to

the greedy method. It implies that the randomization algorithm is

more robust across different data sets.

6 CONCLUSIONS
We study the online weighted bipartite matching problem with

capacity constraints in this paper. We propose a randomized algo-

rithm based on the solution to an offline linear program and analyze

its competitive ratio. We further introduce a re-solving heuristic

to the randomized algorithm and demonstrate that re-solving at

the right times could significantly improve the performance of the

algorithm. Finally, we investigate the value of demand distribution

of the online request to further improve the algorithm’s efficiency.

Several experiments are conducted to test the performance of the

proposed algorithms based on an application in ride hitch.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Online Weighted Bipartite Matching with Capacity Constraints Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Marek Adamczyk. 2011. Improved analysis of the greedy algorithm for stochastic

matching. Inform. Process. Lett. 111, 15 (2011), 731–737.
[2] Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. 2015. Improved

approximation algorithms for stochastic matching. In Algorithms-ESA 2015.
Springer, 1–12.

[3] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. 2011.

Online vertex-weighted bipartite matching and single-bid budgeted allocations.

In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete
Algorithms. SIAM, 1253–1264.

[4] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. 2013. The online

stochastic generalized assignment problem. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques. Springer, 11–25.

[5] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim

Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer. 2017. Min-cost

bipartite perfect matching with delays. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)
81 (2017), 1–1.

[6] Bahman Bahmani and Michael Kapralov. 2010. Improved bounds for online

stochastic matching. In European Symposium on Algorithms. Springer, 170–181.
[7] Alok Baveja, Amit Chavan, Andrei Nikiforov, Aravind Srinivasan, and Pan Xu.

2018. Improved bounds in stochastic matching and optimization. Algorithmica
80, 11 (2018), 3225–3252.

[8] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu.

2016. Online Stochastic Matching: New Algorithms and Bounds. arXiv preprint
arXiv:1606.06395 (2016).

[9] Ning Chen, Nicole Immorlica, Anna R Karlin, Mohammad Mahdian, and Atri

Rudra. 2009. Approximatingmatches made in heaven. In International Colloquium
on Automata, Languages, and Programming. Springer, 266–278.

[10] Nikhil R Devanur and Thomas P Hayes. 2009. The adwords problem: online key-

wordmatchingwith budgeted bidders under random permutations. In Proceedings
of the 10th ACM conference on Electronic commerce. ACM, 71–78.

[11] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. 2013. Randomized primal-

dual analysis of ranking for online bipartite matching. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms. Society for

Industrial and Applied Mathematics, 101–107.

[12] John P Dickerson, Karthik A Sankararaman, Aravind Srinivasan, and Pan Xu.

2018. Allocation problems in ride-sharing platforms: Online matching with offline

reusable resources. In Thirty-Second AAAI Conference on Artificial Intelligence.
[13] Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam.

2020. Edge-Weighted Online Bipartite Matching. arXiv preprint arXiv:2005.01929
(2020).

[14] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. 2009.

Online stochastic matching: Beating 1-1/e. In 2009 50th Annual IEEE Symposium
on Foundations of Computer Science. IEEE, 117–126.

[15] Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam. 2011. On-

line stochastic weighted matching: Improved approximation algorithms. In Inter-
national workshop on internet and network economics. Springer, 170–181.

[16] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. 2018. Online

Vertex-Weighted Bipartite Matching: Beating 1-1/e with Random Arrivals. arXiv
preprint arXiv:1804.07458 (2018).

[17] Patrick Jaillet and Xin Lu. 2014. Online stochastic matching: New algorithms

with better bounds. Mathematics of Operations Research 39, 3 (2014), 624–646.

[18] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. 2011. Online bipartite

matching with unknown distributions. In Proceedings of the forty-third annual
ACM symposium on Theory of computing. ACM, 587–596.

[19] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. 1990. An optimal

algorithm for on-line bipartite matching. In Proceedings of the twenty-second
annual ACM symposium on Theory of computing. ACM, 352–358.

[20] Thomas Kesselheim, Andreas Tönnis, Klaus Radke, and Berthold Vöcking. 2014.

Primal beats dual on online packing LPs in the random-order model. In Proceed-
ings of the forty-sixth annual ACM symposium on Theory of computing. 303–312.

[21] Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. 2020. Competitive

Ratios for Online Multi-capacity Ridesharing. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems. 771–779.

[22] Mohammad Mahdian and Qiqi Yan. 2011. Online bipartite matching with random

arrivals: an approach based on strongly factor-revealing lps. In Proceedings of the
forty-third annual ACM symposium on Theory of computing. 597–606.

[23] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. 2012. Online

stochastic matching: Online actions based on offline statistics. Mathematics of
Operations Research 37, 4 (2012), 559–573.

[24] Aranyak Mehta and Debmalya Panigrahi. 2012. Online matching with stochastic

rewards. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
IEEE, 728–737.

[25] AranyakMehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. 2007. Adwords

and generalized online matching. Journal of the ACM (JACM) 54, 5 (2007), 22.

[26] David Naori and Danny Raz. 2019. Online multidimensional packing problems

in the random-order model. arXiv preprint arXiv:1907.00605 (2019).
[27] Pan Xu, Yexuan Shi, Hao Cheng, John Dickerson, Karthik Abinav Sankararaman,

Aravind Srinivasan, Yongxin Tong, and Leonidas Tsepenekas. 2019. A Unified

Approach to Online Matching with Conflict-Aware Constraints. (2019).

9

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 A Randomized Algorithm — SAMP ()
	4.1 Re-solving Heuristic
	4.2 With Information of Demand Distribution

	5 Experiment
	6 Conclusions
	References

